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STOVL CONTROL INTEGRATION PROGRAM

(SCIP)
FINAL REPORT

1. INTRODUCTION & SUMMARY

1.1. Scope of Report

This report documents all activities completed under task orders 1, 7 and 10 of
contract NAS3-25194. This is a NASA Lewis contract awarded to Pratt & Whitney titled

"Supersonic STOVL Definition, Modification, Test". Task order No. 1 is titled "Planning,
Modeling and Preliminary Control System Design for a Vectored Thrust Concept STOVL
Aircraft". Task order No. 7 is titled "Control Logic and Simulation Development and
Simulation Validation for a Vectored Thrust Concept STOVL Aircraft." Task Order No. 10

is titled "Control Logic and Simulation Delivery and Piloted Simulation Evaluation Support
for a STOVL Aircraft". Together, these three task orders are more commonly referred to as
the "STOVL Control Integration Program" or "SCIP" and when it is desirable to distinguish

among the task orders, they are referred to as SCIP1, SCIP2, and SCIP3. This is therefore
the STOVL Control Integration Program final report and documents the activities

completed between the start of SCIP1 in February 1988 and the conclusion of SCIP3 in the
summer of 1993.

1.2. Problem Statement

Flight and propulsion control integration on most aircraft is a pilot function. On those
aircraft which do employ an Integrated Flight/Propulsion Control (IFPC), it is usually a
performance enhancement feature that is not critical to vehicle operation. For many
advanced STOVL concepts though, the IFPC will be critical to the success of the aircraft

as they would be unflyable otherwise. They will rely on digital electronics and advanced
algorithms to a much greater extent than in any existing aircraft to make for an acceptable
pilot work load through the various mission segments and under widely differing operating
conditions.

The objective of SCIP is to develop IFPC technologies and processes for advanced
STOVL applications. This was achieved by designing an IFPC for a representative STOVL
aircraft, developing the integrated designs and processes along the way. To validate the
IFPC, a piloted simulation at NASA Ames occurred as the culmination of the program. To
make this possible SCIP developed and delivered aircraft and engine models in addition
to the IFPC.

1.3. Program Background

Advanced supersonic STOVL concepts couple the operation of the propulsion system
and the airframe in ways too complex for the pilot to be the sole systems integrator. Integra-

tion of the flight and propulsion controls is therefore a requirement for these concepts, and
the success of these concepts will greatly depend how successful this integration is carried

out. Recognizing this challenge, NASA initiated SCIP to investigate IFPC design for an ad-
vanced vectored thrust STOVL aircraft.



Pratt & Whitney was awarded this contract with McDonnell Douglas as a subcontrac-
tor. This reversal of hierarchy in the normal airframe manufacturer / engine manufacturer
relationship was intentional. NASA recognized the criticality of the propulsion control in
hover and transition flight modes and that the best way to make the engine manufacturers
understand the problem was to make them responsible for it in a technology program.

SCIP was awarded as three separate task orders on a single contract. A funding hiatus
occurred at the end of SCIP1 and when work was resumed at the beginning of SCIP2 it
was decided to build upon the model and control law development of the PROLIFIC pro-
gram instead of SCIP1 because at that time it was much further advanced.

PROLIFIC is an Air Force program, that was originally planned as a companion, but
independent, program examining IFPC technology for advanced STOVL aircraft. Unlike
SCIR PROLIFIC was planned to test a STOVL IFPC in electronic control hardware rather

than on a host computer and the manned simulation was planned for a McDonnell Douglas
simulator instead of the NASA Ames simulator. Since PROLIFIC started a year later than
SCIP1, it modelled a more up-to-date version of both the McDonnell Douglas Mixed Flow
Vectored Thrust (MFVT) aircraft and the Pratt & Whitney engine configured for this con-
cept. When SCIP2 started up, the Air Force had redirected PROLIFIC towards other IFPC
applications.

In SCIP1 an initial simulation model was developed and delivered to NASA. The PRO-
LIFIC program updated the aircraft model from SCIP1 and added flight control laws for
conventional wingborne flight. It also updated the propulsion model for a cycle tailored
to the STOVL aircraft concept and generated the propulsion control laws. In SCIP2 and
SCIP3 the aircraft model from PROLIFIC was updated to include STOVL jet effects and
STOVL hover and transition control laws. Also the propulsion model was simplified and
tailored for realtime operation at NASA Ames.

In hindsight, program timing was rather serendipitious in that the original delay in start
of the PROLIFIC program let PROUFIC benefit from the work completed under SCIP1,
while the delay in starting SCIP2 let it benefit from the work completed under PROLIFIC.

References to PROLIFIC in this report refer to STOVL efforts conducted under the Air
Force program before its redirection to other IFPC applications and upon which much of
the later SCIP efforts were based.

Over the five and one-half years SCIP progressed, many changes have taken place.
There have been changes in personnel working the program, changes in the NASAtechni-
cal contract monitor, changes in the preferred STOVL concepts, changes in propulsion
and propulsion control technology, and changes in the airframe and engine manufacturer

teams that may build the next production STOVL aircraft. Despite all these changes, one
is surprised at how well SCIP met the intentions of those who started on the program over
half a decade ago. The basic purpose of SCIP was to advance the state-of-the-art in

STOVL IFPC design so as to reduce risk in a flight demonstrator program, and in this, it
definitely succeeded. The control design approach proposed at the beginning of the pro-
gram and which then appeared to us at Pratt & Whitney as such a great challenge, is now
our basic approach to all complex IFPC problems and would be the foundation to any
succeeding flight test program.
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1.4. Principal Findings

The technical accomplishments of SCIP are detailed fully in this report, but, it is also

important to highlight the top lessons learned with respect to IFPC development.

First, much of the success of SCIP came from the very free and open communication
between the flight control designers and the propulsion control designers. Through this
communication came an understanding of the other designers' challenges and concerns,

and this understanding was the first step in the path to resolving those issues. Most of our
design hacks were traced back to poor communication and not to any individual's mistake
in analysis. Probably the best approach to an integrated design is to locate all the design-
ers in the same room. This is usually not possible and must be compensated for by making
communication as easy as possible.

Second, the Generalized Actuator Model (GAM) employed in SCIP is a very useful tool

in developing an IFPC. The GAM is a much simplified engine model, but with all the I/O
of the full model, given to the airframer early in the development of the IFPC to simulate
predicted engine and propulsion control performance. It let the flight control designer
know upfront what performance could be expected from the propulsion system so that he
could begin his design. It also acted as the performance specification for the propulsion
control designer. This proved more useful than a typical performance specification and
let many issues be resolved early in the program when the cost of making changes is small.

Lastly, piloted simulations were again demonstrated as a necessarytool in IFPC devel-
opment. Despite all the technical preparations there were many surprises in how the differ-
ent control modes acted that would not have been uncovered without either a simulator

or the prohibitive cost and expense of a flight demonstrator. A high fidelity piloted simula-
tion is critical to developing a successful ASTOVL IFPC.

1.5. Report Organization

This report is divided into four sections. It opens with a short introduction section
which is followed by a section which describes the activities performed in SCIP1. This
second section is further divided into subsections defining the configuration, the control

modes, the control requirements and the control system architecture. The third section
describes the activities performed in SCIP2 and SCIP3. This section is further divided into
subsections defining the airframe and ground effects model, the propulsion model and the
IFPC logic design. Also included are subsections detailing the transition envelope
sensitivity and control power analysis and another subsection presenting the simulation
test results. A short summary and conclusion section completes the report.



2. SCIP1 - PLANNING, REQUIREMENTS, AND DEFINITIONS

2.1. Baseline Configuration Definition

The aircraft configuration used in the SCIP Program evolved from the MDA ASTOVL
Mixed Flow Vector Thrust (MFVT, Figure 1) aircraft developed in the US/UK ASTOVL

Program (Reference 1). In SCIP1, this aircraft was resized to fit some other design
missions, and used as the study aircraft for the rest of that phase. Also in SCIP1, a trade
study was performed to select between several options on the type of propulsive control
effectors. Then, in the USAF PROLIFIC Program (Reference 2), another version of the
MFVT aircraft was redesigned and redrawn to fit a USAF air superiority mission (it was one
of the SCIP1 missions), and used as the study aircraft for that program. In PROLIFIC, a
six degree of freedom simulation model of that aircraft was developed by modifying the
simulation model that was developed in SCIP1. Since this model was the most mature
existing at the time the remaining phases of SCIP began, since the aircraft it represented

was very close to the original SCIP aircraft, and since the aircraft fit one of the SCIP design
missions, the new variant was used as the study aircraft for the remainder of the SCIP
Program.

2.1.1. SCIP1 Initial Definition

The process by which a baseline STOVL configuration was initially chosen for SCIP
is shown in Figure 2. The MFVT concept aircraft (Figure 1) developed in the US/UK
program (Reference 1) was chosen as the study aircraft for this program. The configuration
was initially sized to the US/UK ASTOVL air superiority mission, (Reference 1), using the
SE550 PW5000 derivative engine (Figure 3), and designated by MDA as the MFVT Model
4629E. As shown in Figure 2, an analysis was done to resize the aircraft's wing area and
fuel capacity to fit the requirements of three other missions that were considered in this

study: a USMC deck launched intercept mission (Figure 4), a USMC close air support
mission (Figure 5), and a USAF air superiority mission (Figure 6). The resulting
configuration used for study in SCIP1 was a variant of the MFVT Model 4629 with slightly
more fuel and a slightly larger TOGW than the US/UK variant. The SCIP1 study aircraft is
referred to in this report as the ASTOVL MFVT Model 4629.

Six variants of the 4629 were studied in SCIP1, representing different control
configurations for the propulsive control effectors, as shown in Figure 7. Variant I
(Figure 8) is the baseline 4629 configuration with main lift nozzle splay vectoring and
compressor bleed RCS. Variant II (Figure 9) is the same as Variant I, except that mixed
flow is used to drive the RCS instead of compressor flow. Variant III, (Figure 10), eliminates
th RCS system, and adds lateral vectoring to the ventral nozzle. All Variants I, II, and III
employ main lift nozzle variable splay vectoring. Variants IV, V, and VI, are similar to I, II,
and III, respectively, except that the variable splay on the main lift nozzles is replaced with
a pitch vectoring capability (Figure 11).

Analyses were performed to determine the variant to be used in the remaining Phases
of SCIP. These analyses (discussed in Section 2.3.1) resulted in Variant VI being chosen
as the preferred control configuration, although the compressor bleed RCS system was
retained on the aircraft so that the technical issues between RCS versus nozzle vectoring
could be studied in more detail in the rest of the program.
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Figure 10. MFV'r Variant III Control Effectors
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2.1.2. PROLIFIC Configuration Definition

The 4629 Variant Vl was used as a starting point in the development of the study aircraft

for PROLIFIC. The US/UK ASTOVL Model 4629E was redesigned to fit the USAF Air

Superiority mission as part of the USAF ATEGG study, and designated by MDA as the
ASTOVL MFVT Model 4636. An overview of the derivation of the 4636 is shown in Figure

12.

The initial step to resizing the Model 4629 was to incorporate the Air Force

requirements into the Computerized Aircraft Design Assessment (CADE) program. The

CADE program resized the fuel to meet the 300 NM radius requirements, and resized the

wing area and engine thrust to meet the maneuvering point performance. The required
maneuvering point performance is 90 percent of the 1984Tactical Air Command Statement

Of Need (TAC SON) point performance.

The CADE representation of the aircraft included weight and performance increments
for Low Observable (LO) requirements. Although the Model 4629 development had no LO

requirements, the basic aircraft was conceived with fundamental aircraft shaping and
internal weapons carriage that would be feasible for add on LO provisions. In parallel with

the NASA Ames US/UK ASTOVL activity, an Air Force Addendum contract was awarded

to MCAIR for the design and evaluation of an LO variant of the Model 4629 MFVT concept.

That study provides a direct breakout of weight and performance increments that, when

applied to the Model 4629 aircraft, produces the same aircraft size and performance as the
LO variant. These increments were added to the CADE representation of the Model 4629

concept. The addition of these increments allows for the consideration of LO requirements

in the MFVT aircraft without requiring additional secudty restrictions on the aircraft design.

The next step in establishing the MFV'I aircraft was to redraw the configuration. The

performance of the redrawn configuration was then evaluated. The preliminary sized
aircraft achieved a Take Off Gross Weight (TOGW) of less than 35,000 lb. while meeting

the Air Force requirements.

Resize t-_
Using
CADE

Redraw
Configuration

Resize with
STF 952A

Using CADE

Figure 12. Mixed Flow Vectored Thrust Model 4636 Development
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The final step involved selection of the engine. An engine cycle optimization was

performed by Pratt & Whitney which reduced the bypass ratio of the STF 868A (the engine

in the original aircraft) from 0.8 to 0.45, and increased the dry power thrust relative to

maximum power. The new engine was designated STF 952A. This engine was
incorporated into the CADE representation of the aircraft and resized to the Air Force

mission. This final configuration was designated Model 4636 and is lighter than the Model
4629.

As part of the PROLIFIC program, the SCIP1 Variant Vl propulsion control effectors

were also included with this configuration. The MFVT 4636 with the Variant Vl control

effectors was chosen as the study aircraft for the PROLIFIC and for SCIP2 and SCIP3. This
study aircraft is referred to as the ASTOVL MFVT Model 4636.

2.1.3. Configuration Description

The resulting MFVT Model 4636, shown in Figure 13, is a supersonic, single seat,

blended body configuration. The vehicle has a mid-mounted wing, canted tails, and
internal weapons bays for low drag carriage of four AMRAAMS and two ASRAAMS. A 20

MM gun with 500 rounds of ammunition is also carried internally. Hard points are provided

in the wing for external store stations which allow carriage of additional air-to-air weapons,
air-to-ground weapons, and external fuel tanks.

w/s ,.., 63
T/W _ 1.35

Internal Weapons

Bay

33.4 Ft

Auxiliary

Vectoring
Nozzle

C)

Figure 13. Model 4636 Mixed Flow Vectored Thrust Concept
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Fuel tanks are located in the airframe to minimize fuel system vulnerability and to

maintain a desired narrow center of gravity travel for inflight and STOVL operations. None
of the tanks are located over or around hot sections of the cruise engine.

The cruise engine inlet system consists of twin, side mounted, fixed geometry, seven

degree, single ramp, two-dimensional inlets and bifurcated subsonic diffusers. For STOVL

operation, two large top located auxiliary inlets, sized to two times the throat area of the
main inlet, are installed in the inlet diffusers. The auxiliary inlets provide predicted inlet

recovery ratios as high as 0.962 in the static STOVL hover mode with the main inlets
blocked. The main inlet blocking doors provide necessary control of hot gas ingestion from

cruise engine lift nozzles as well as protection from ingestion of foreign objects into the inlet

system during STOVL operations.

Lift Improvement Devices (LIDs) are located on the underside ofthe fuselage. The LIDs
are retractable fences which form a box to capture the jet fountain upwash in the vertical

landing mode of operation. Capturing the fountain increases lift and also controls the hot

gas flows to reduce hot gas ingestion.

The Pratt & Whitney STF 952A engine is shown in Figure 14.

228

Transport Ducts

TOP VIEW

88

189

Diverter Section

101
119

158
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FRONT VIEW

REAR VIEW

Figure 14. STF 952A MVFT STOVL Engine
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The diverter section to the transport ducts consists of two laterally positioned offtake
ports located just aft of the turbine exit. Each port has a two position (open or closed) valve.
The transport duct consists of dual integral elbows connecting the diverter ports to dual
remote lift nozzles, located forward of the aircraft center of gravity. The lift nozzles are
installed with eight degrees aft fixed thrust angle. The angle matches the eight degree nose
up attitude during aircraft hover. The nozzles have variable area control, providing vertical
thrust modulation for hover roll control and are blocked (valve closed at the diverter and
the lift nozzle closed) for conventional up and away engine operations. The lift nozzles also
have _20 degree vectoring, providing increased deceleration in transition to hover,
increased maneuverability in hover, and reduced pitch reaction control bleed
requirements. The lift nozzles are completely enclosed within the airframe behind actuated
doors. A trim nozzle, Figure 3, is also provided for pitch control and cam vector laterally

for yaw control.

The STF 952A also provides for rear compressor stage bleed air extraction. The
Reaction Control System (RCS) bleed acts as another control effector to provide for added
pitch, roll and yaw control. Additionally, the STF 952A is equipped with a two dimensional,
convergent-divergent main cruise nozzle. This nozzle is a Spherical Convergent Flap
(SCF) design with partial and full blockage capability for flow diversion to the lift nozzles.
The nozzle also has _20 degrees pitch, Figure 15, and +_20 degrees yaw, Figure 16, thrust
vectoring capability without power setting restrictions.

imii ..... _o_°

VectorUpwar0
Figure 15. SCF Nozzle Pitch Vectoring (Side View)
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Figure 16. SCF Nozzle Yaw Vectoring (Top View)

2.2. Control Mode Definition

The process used for determining the control modes for this study is shown in

NO TAG. First, the available sources of information on STOVL control modes and handling

qualities were reviewed to determine several candidate control modes. These candidate
modes were then implemented in MDA's Generic Aircraft (GENAIR) simulation for STO and

Hover tasks. Simulation testing was performed to establish preferred control modes and

to study handling qualities for each mode. An analytical evaluation was done for the
transition task.

2.2.1. Candidate Control Modes

The candidate control modes were determined by dividing the missions into specific

segments, and defining the piloting tasks required to perform each mission segment.
Focus was drawn to three segments where STOVL operation is required: STO, transition,

and hover.

As a source for information on candidate control modes, we drew upon our experience

on existing aircraft, including the AV-8B and S/MTD. Information on the operational aspects
of these aircraft relative to STO, transition, and hover tasks was obtained by interviewing

pilots experienced with these aircraft. Experts knowledgeable on the control systems for
these aircraft were also interviewed.

Other sources of information were simulation studies performed at MDA (References

3-6), and at NASA-ARC (References 7-9). Both of these sources provide data on
translational rate command systems in hovering flight. The referenced NASA-ARC

simulations also provide much information on different control concepts for transition

flight.
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Various other sources available in the literature were also drawn upon, including earlier
Navy (References 10, 11) and Air Force (References 12-14) studies. Also, UK experiments

were reviewed to include control concepts being studied by RAE. The US and UK military

specifications, MIL-F-83300 and proposed revision and AGARD 577 (References 15-18),
were also reviewed.

This study effort produced the candidate control modes shown in NO TAG. For the

STO task two modes were defined. The manual rotation mode is a fairly conventional

thrust vectoring STO where the pilot is given a cue on the Head-Up Display (HUD) to rotate
the aircraft to liftoff attitude at a particular groundspeed. In the automatic rotation mode,

the IFPC rotates the aircraft to a pretrimmed attitude at the correct groundspeed, providing
a potential improvement in the repeatability of the take-off distances achieved.

For the transition task, three candidate control modes were defined. The first is a

manual mode where the pilot directly controls engine power and equivalent thrust vector

angle. This mode is similar to the Harrier, and would provide the highest safety for a
technology demonstrator aircraft because of pilot familiarity. However, more highly

augmented modes in transition have a great potential for decreasing pilot workload and
enabling operation in more severe environments.

r
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Figure 17. Control Mode Definition Process
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Figure 18. Candidate Control Modes

One candidate is a mode where control of aircraft speed is provided on a speed control

lever (such as the Harrier nozzle lever), with an autothrottle providing control of aircraft
flight path. This mode decouples the aircraft's response in the speed and flight path axes,
relieving the pilot from having to manually control speed and flight path through
management of the thrust and thrust vector. This mode is especially suitable for slow or
rolling landings where the pilot wishes to capture a particular approach speed for landing.

Another candidate mode is similar to that being studied at NASA-ARC on the
referenced simulation, and being implemented on the V/STOL Research Aircraft (VSRA),
for eventual flight test. This mode provides control of acceleration on a thumbwheel (with
speed hold), with an autothrottle providing decoupled control of flightpath. This mode is
especially suitable for precisely tracking an approach profile to capture a particular hover
position.

Several candidate control modes for the hover task were defined as shown in NO TAG.

In all modes, the throttle controls altitude rate and rudder pedals control heading rate.
Therefore, each of the modes differ inthe stick control characteristics. One mode provides
control of pitch and roll rate with attitude hold and is similar to the response of the Harrier
to stick inputs. The second mode provides direct control of pitch and roll attitude,
potentially reducing pilot workload especially during shipboard landing tasks where
precise control of aircraft attitude is required. The third mode provides control of horizontal
translation rate on the stick, with the IFPC commanding changes in aircraft attitude to
achieve the translation. This Translation Rate Command (TRC) system exhibits the

greatest potential for reducing pilot workload. The fourth mode is the same as the third,
except that longitudinal translations are achieved through vectoring the main lift nozzles;
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thus pitch attitude changes are not required to translate, potentially improving aircraft
handling.

The two candidate control modes for the STO task, and the four candidate modes for

the hover task were implemented in the GENAIR simulation and evaluated by four different
pilots over 87 flights. The simulation test and results are discussed in the following
sections. The GENAIR simulation was not capable of simulating transition flight. As a
result, the transition modes were only analyzed for pros and cons by a panel of IFPC
experts and pilots experienced in V/STOL flight. Also, all three candidate transition modes
were retained as modes to be tested in the final SCIP manned simulation.

2.2.2. GENAIR Description

GENAIR is a simple, flexible, low cost simulation developed by MDA to design and
evaluate aircraft performance, flying characteristics, and cockpit controls and displays.
The GENAIR simulation model provides realistic aircraft response characteristics with a
minimum of required aerodynamic data.

The rotational dynamics of the GENAIR aircraft are modeled using a transfer function
approach. Thus the user can specify the handling qualities to be tested by using frequency
and damping parameters in an equivalent system response. These parameters can then
be programmed directly into the GENAIR model's transfer functions to simulate an aircraft
with the specified equivalent system response.

The linear acceleration dynamics of the GENAIR aircraft are determined using a
straightforward calculation of the forces resulting from the angular responses and thrust.

Thrust forces are generated by the use of a transfer function model of the engine
dynamics and output level. Thus vertical or axial dynamics can also be specified by the
user in terms of equivalent system parameters and directly incorporated into the GENAIR
aircraft model.

2.2.3. GENAIR Test Description

The GENAIR simulation was performed in MDA's Manned Aircraft Combat Simulator

number 3 (MACS3). MACS3 is a 40 ft domed simulator facility with reprogrammable
head-up (HUD) and head down displays to allow flexibility to study different display
formats.

The main objective of the GENAIR simulation was to make a preliminary assessment
of pilot preference between the candidate control modes for the STO and hover tasks. One

secondary objective was to investigate variations in the closed loop dynamics of the
aircraft response in the various hover control modes to establish good flying qualities goals
for the SCIP simulation control law design. Another objective was to evaluate new HUD
display concepts for the hover task.

For the STO task, both the manual and automatic rotation modes were implemented
in the GENAIR simulation. The STO task that the pilots performed to evaluate the modes
is shown in Figure 19. The pilot presets the pitch trim to 12 ° angle of attack, throttles up,
and releases the brakes to start the groundroll. In the manual rotation mode, the pilot
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rotates the aircraft to the pretrimmed 12 ° attitude at 60 knots, with liftoff occurring at about
120 knots. In the automatic rotation mode, the IFPC rotates the aircraft at the proper

velocity, resulting in essentially a "hands-off" STO.

Preset
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Trim to
12 ° AOA

All Flow Out

I. Cruise

!- Nozzles
- Max A/B

Release
Brakes Automatic/Manual

Advance Aircraft

Throttle Rotation
to 12 ° AOA

,4

Liftoff

1

I
V= 0kts

I I
60 kts 120 kts

Figure 19. GENAIR STO Evaluation Task

For the hover task, all four candidate modes were implemented in the GENAIR

simulation. The task the pilots performed to evaluate the modes is shown in Figure 20.

The task segment starts at 100 feet of altitude and 100 feet south and east of the hover

landing pad. The pilot performed a lateral translation to the proper cross range followed

by a longitudinal translation to the hover pad. Then a 360 ° pedal turn was performed to
evaluate directional characteristics, followed by a vertical landing.

A HUD display was developed in the SCIP program for use in the hover task, Figure 21.

This display contains some of the features of a H UD being developed by NASA-ARC

(Reference 19). NASA's hover HUD display is currently being flight tested on the

NASA-ARC VSRA. The major new features that were included in the GENAIR hover HUD

are symbology that superimposes both horizontal and vertical situation information.
These include a trident representing the aircraft position relative to both a vertical landing

pad symbol and a horizontal landing pad location symbol represented by a cross that is
centered in a circle. Also, a circle representing a commanded velocity is included in the

display, with a symbol emanating from the trident as shown in Figure 21, to represent the

velocity response of the aircraft. Off to the right of the display is a caret next to a reference
line which indicates vertical closure rate to the hover pad.
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2.2.4. GENAIR Test Results

The two candidate control modes for the STO task, and the four candidate modes for

the hover task were evaluated by four different pilots over 87 flights. Most of the flights were

spent in the hover modes experimenting with different dynamical characteristics for the
stick responses. As a result, only a limited number of evaluations for each mode in hover

could be compared with evaluations in other hover modes. Therefore only qualitative data

could be extracted to rank the pilot preferences between the various modes.

The results of the rankings are shown in Figure 22, where the modes for both the STO

and hover tasks are listed in ascending order of preference. Sample pilot comments on
each mode are also included. For the STO task, the autorotation mode was seen as

providing a lower pilot workload and a more repeatable task. For the hover tasks, the pilot

preferences confirmed results seen in previous simulations and flight tests, with the TRC

system providing the greatest relief in pilot workload, while also providing a system which
could be flown very aggressively in severe conditions. The TRC using nozzle vectoring for

longitudinal translations was slightly preferred because pitch attitude changes were not
needed to translate.

Task Mode Pilot Comments

Manual Rotation

STO

H over

Automatic Rotation

Rate (no attitude
hold)

Attitude

Velocity
• Fixed Nozzles

Velocity
• Vectoring Nozzles

"Requires Large Stick Displacements to Start Rotation
and Capture AOA After Liftoff"

"Easier Than Manual, Rotates You to 12 ° Climbout

Angle, ...Reduces the Pitch Rate to Zero, Hands You
the Airplane in a Very Nice Place. Fairly Comfortable".

"High Workload...Won't Stay Put...Have to Constantly

Readjust".

"Very Precise...Acceptable Workload, More Work Than
Velocity Command, but More 'Airplane Like'
Response...Safe and Controllable, but Sensitivity Too
Low, and Response Too Slow for Large Corrections".

"Absolutely Accurate...Responsive...Acceptable for
Fine Tracking...Very Stable in Trimmed Hover".

"Takes a Little Getting Used to but You Can Do Some

Pretty Neat Stuff With It. Can Make a Very Precise
Landing".

Figure 22. Control Mode Rankings
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2.2.5. Control Modes for the SClP Manned Flight Simulation

The transition control modes were analyzed by a panel of IFPC experts and pilots
experienced with V/STOL operations. A summary is provided in Figure 23. The manual

throttle/nozzle lever mode requires the pilot to integrate the throttle and nozzle lever

responses to control speed and flight path, and represents the highest workload control

mode of the three candidates. The velocity/flightpath mode provides decoupled control

of speed and flightpath, but requires that the pilot frequently switch his left hand between

the throttle and speed lever when acquiring the hover point. The acceleration/flightpath

system also decouples speed and flightpath control, accommodates constant speed

tasks such as slow landings or rolling vertical landings, and does not require the pilot to
switch his hands between controls.

Mode Factors

Attitude Power

Thrust Angle

Velocity
Flight Path/Altitude Rate

Acceleration

Flight Path/Altitude Rate

Pilot Integrates Propulsion and
Flight Control Systems

High Workload and Control Activity

Decoupled Operation

Good Conventional Approach
Characteristics

High Control Activity for
Approach to Hover

• Consistent With

STOVL Operation

• Minimizes Control Operation

• Accommodates Constant Velocity
Operation for Slow Landing

• Decoupled Operation for Low
Pilot Workload

Figure 23. Transition Control Mode Evaluation
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The results of the analytical studies and the GENAIR simulation were used to define
the control modes to be implemented in the SCIP3 simulation. They are:

Task Segment Control Mode

STO • Manual Rotation

Transition • Manual Throttle/Nozzle Lever

• Velocity/Flightpath

• Acceleration/Flightpath

Hover • Attitude Command

• TRC by Attitude

The STO auto rotation mode was not implemented because programming the
autorotation so that the rotation occurs at the appropriate velocity for all aircraft

configurations and flight conditions would have required an extensive analysis of many

flight conditions to find the correct rotation schedules. Therefore, the autorotation mode
was eliminated so that more program resources could be concentrated on the transition
and hover modes. All three transition modes were implemented in the SCIP3 simulation.

Two of the hover modes, the attitude and TRC modes were implemented. The TRC by

nozzle vectoring was not implemented because the Variant VI control effectors use the

nozzle vectoring differentially to control yaw, and the control power on the nozzle vectoring

was not adequate for simultaneously vectoring for both yaw control and longitudinal
control.

The control modes are described in more detail in Section 3.3.1.

2.3. Control System Requirements Definition

The control system requirements defined in this section are the aircraft actuator

response requirements and the propulsion system response requirements. In SCIP1,
initial trade studies investigated the Variant I-VI control configurations, (refer to Figures 8

through 11). The propulsive control power of each variant was compared relative to the
US/UK Concept Evaluation Model (CEM) requirements, and a preferred control

configuration was selected for use throughout the rest of the program, Section 2.3.1. Two

subsequent control power analyses were performed on the preferred control

configuration, Section 2.3.2, before the final propulsive system response requirements
were determined, Section 2.3.3. The aircraft actuator response requirements were

determined in the US/UK Program, Reference 1 and Section 2.3.4.

2.3.1. Vectoring vs. RCS Trade Studies

In SCIP1, the six variant control configurations were analyzed in a trade study to

determine the most promising candidate. Variant I (Figure 8) is the baseline US/UK 4629

control configuration, and employs compressor bleed RCS. Thrust split between the main
lift nozzles and the ventral nozzle is used as a slow rate control effector to trim pitching

moment, while the pitch RCS system provides fast dynamic response for pitch control.

Thrust split between the main lift nozzles is used for roll control, and yaw control is achieved

through the yaw RCS system. Control power for this variant meets the US/UK CEM
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requirements, Reference 1,but employs compressor bleed RCS to provide adequate pitch
and yaw control.

Since the compressor bleed RCS system inflicts large performance penalties for the

engine, mixed flow RCS was investigated as an alternative RCS bleed system. A mixed
flow RCS system was designed with the same exit valve type and locations as the

compressor bleed system, and with the ducts and valves sized to provide the same control

authority. The resulting duct sizes were large and could not be easily integrated into the
4629 configuration.

Variant III attempts to remove the requirement for compressor bleed RCS by

increasing the rate requirement for modulating thrust split between the main lift nozzles

and the ventral nozzle to provide adequate pitch control without the pitch RCS. Also,

ventral nozzle vectoring was added to provide a yaw control effector to replace the yaw
RCS. Figure 24 presents the yaw control power produced by the ventral nozzle for various

ventral nozzle vectoring limits. This figure shows that ventral nozzle vectoring alone does
not provide the 0.2 rad/sec 2 required by the CEM.

Ventral. Nozzle for Yaw Main Lift Nozzles for Yaw

Lift Loss
Ibf

Yaw

Control
Power,

rad/sec 2

o

0.2 I 30"

0.2

0.1

20"

10"

I I I

38 40 42 38 40 42

C.G., % MAC C.G., % MAC

Figure 24. Yaw Control Authority from Lift Nozzle Vectoring
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Variants IV and V add main lift nozzle vectoring to the Variant I and II configurations,

respectively. Vectoring the equivalent thrust vector angle using lift nozzle vectoring is more

efficient than thrust vectoring using thrust split between the main lift nozzles and the cruise

nozzle (Figure 25), thus increasing the aircraft's acceleration capability in transition,

Figure 26. Also, the forward vectoring capability of the main lift nozzles improves
decelerations during transition into hover, Figure 26. The main lift nozzle vectoring

provides increased yaw control power, Figure 24, however the yaw control power provided

by main lift nozzle vectoring alone only barely meets the CEM requirement.

The variant VI control configuration employs both main lift nozzle vectoring and ventral

nozzle vectoring. This nozzle vectoring combination provides adequate yaw control

relative to the CEM requirements. As with the Variant III configuration, the rate requirement

for modulating thrust split between the main lift nozzles and the ventral nozzle was

increased to provide adequate pitch control without the pitch RCS. Therefore, the Variant
VI control configuration provides adequate control power without the use of RCS, and was

selected as the preferred control configuration.

The control configuration selected for use in the rest of the program is shown in

Figure 27. In the rest of this report, this control configuration is referred to as the SCIP

control configuration.

Although, Variant Vl was chosen as the preferred configuration, the compressor bleed
RCS was retained so that the technical issues between using RCS versus nozzle vectoring

could be studied in more detail during the rest of the program. As shown in Figure 27, pitch

control is achieved by modulating the thrust split between the main lift nozzles and the

ventral nozzle. Pitch control authority is supplemented with the RCS system by collectively

modulating the vertical thrust component of the left and right aft RCS valves. Modulation

of the thrust split between the left and right main lift nozzles provides roll control. Additional
roll control authority is provided through the RCS by commanding thrust in the dorsal

direction on one side and commanding thrust in the ventral direction on the opposite side.

Yaw control authority is provided through differential vectoring of the main lift nozzles and

lateral vectoring of the ventral nozzle. Yaw control power is supplemented by side to side
thrust commands to the RCS.
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Body Axis
Normal
Thrust

Percent Total

Acceleration
8 ° Q

Level Flight

Deceleration
15°Q

Level Flight

90 ° ej

100

80

60

4O

20

0.8

0.6

0.4

0.2

0

-0.2
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A
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Nozzle

60 ° ej
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Example:
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Figure 25. Vector Angle Efficiency
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Figure 26. Acceleration/Deceleration During Transition
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Preferred Control Configuration

• 3.6 kg/sec (8 pps) , • -t-20" Vectoring

, Compressor Bleed RCS _ /_
_,.---_--,-_-...__. .I__I---"-7 /..-_ _

'".... i. C _ll__ Differential Area
• 8 pps Compressor ,_ [ r. _

Bleed RCS t | I_1 _._

1t _ =.,,_I_'_11\ • 3.6 kg/sec (8 pps)

_J _ i_ CompressorBleedRCS

I" _ _ I_ • ::E20" Vectoring

_ Differential Area " _k_

Figure 27. SCIP Control Configuration

2.3.2. Summary of SClP and PROLIFIC Control Power Requirements Studies

In SCIP1, control power was computed analytically and compared to the CEM

requirements, MIL-SPEC requirements, and MDA derived requirements based on AV-8B

experience. During the SCIP1 trade studies, time histories of the GENAIR simulation runs
were used to determine the pitch, roll, and yaw control actually used during the flights. A
model of the aircraft was used to back out time histories of the control effector positions

and rates that were required to generate the aircraft responses recorded in the GENAIR
simulations. These results were used to refine the aircraft response requirements in pitch,

roll, and yaw, and also to refine the actuator rate and dynamic response requirements.

In PROLIFIC Task 1, the analysis performed in SCIP1 was repeated for the 4636 with

the SCIP control configuration, including both the analytical control power studies and the

GENAIR time history studies. The results are presented in Reference 2. However, the
results from the GENAIR simulation runs were of limited value, because a complete set of

maneuvers could not be generated from the limited number of simulation runs.

Therefore, in PROLIFIC Task 2, a complete set of maneuvers was generated using a

non-real time program developed in PROLIFIC Task 2. This program used rate limited

transfer function representations of the desired equivalent system response of the aircraft

in the pitch, roll, yaw, vertical and axial axes. Time histories were generated by inputting

commands through the equivalent system transfer functions to generate time histories of

the required aircraft motions. A model of the aircraft (including induced aerodynamic and
jet effects) was used to back out the forces and moments that the propulsive control
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effectors must generate to produce the aircraft motion given by the time histories. Then

time histories of the individual nozzle thrusts and vector angles were generated from

physical models of the nozzles. From these time histories, the dynamic response

requirements, the required maximum rates, and the required maximum travels of the
nozzle thrusts and vector angles were computed.

2.3.3. Propulsion System Response Requirements

All of the studies described in Sections 2.3.1 and 2.3.2 were used to generate

requirements on the propulsion system, Figure 28. The nozzle vectoring position limits

were driven by the results of Figure 24, which shows that 20 ° vectoring of both the main
lift nozzles and the ventral nozzle is required to achieve adequate margin above the CEM

requirement of 0.2 rad/sec 2 yaw acceleration. The vectoring rate requirements were

derived from the results of the PROLIFIC Task 2 studies which showed that 80 deg/sec of

vectoring was required to eliminate the need for yaw RCS. The nozzle thrust split rate

requirements were driven by pitch and roll control authority requirements. The pitch and

yaw vectoring requirements of the SCF nozzle were set to meet the rate requirements of
the aerodynamic tail surfaces.

RCS Valve

Cruise Nozzle

RCS Valve

Ventral Nozzle

Lift Nozzles

Vectoring Sign No Load
Propulsive Control Effector Convention Deflection Limits Rate Limits

Cruise Nozzle Pitch Vector +Ventral -20.0" 20.0 ° 60.0 deg/sec

Cruise Nozzle Yaw Vector

Left Lift Nozzle Pitch Vector

Right Lift Nozzle Pitch Vector

Ventral Nozzle Lateral Vector

(Left Lift Thrust)/(Left + Right Lift Thrust

(Ventral Thrust)/Left + Right + Ventral Thrust)

RCS Valves

+Port -20.0" 20.0" 60.0 deg/sec

+ Forward -20.0" 20.0" 80.0 deg/sec

+Forward -20.0" 20,0" 80.0 deg/sec

+Port -20.0" 20.0" 80.0 deg/sec

- 0.35 0,65 100%/sec

- 0.00 0.37 100%/sec

- 0,0 sq in 8.0 sq in 8,0 sq in/sec

Figure 28. Propulsive Control Effectors
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2.3.4. Aircraft Actuator Response Requirements

The requirements for the aerodynamic surfaces are shown in Figure 29. The control
deflection limits of the 4629's aerodynamic control surfaces were designed in the US/UK

Program (Reference 1) to meet 90% ofthe 1984 TAC SON point performance requirements
for a supersonic fighter aircraft. Since the 4636 aircraft is nearly the same size and weight

as the 4629, these same requirements were used for the aerodynamic surfaces on the
4636.

Aerodynamic
Effectors

Collective/Differential

Flaps and Ailerons

Differential/Collective

All-Moving Tails
(Rudder Sign Conventions)

Surface

TAILL

TAILR

Description

LeftTail

Right Tail

Sign []
Convention

+TEL

+TEL

+TEDAILL Left Aileron

AILR Right Aileron +TED

TEFL Left Trailing Edge Flap +TED

TEFR Right Trailing Edge Flap

Left Outboard Leading Edge Flap

Right Outboard Leading Edge Flap

Left Inboard Leading Edge Flap

LEFOL

LEFOR

LEFIL

LEFIR Right Inboard Leading Edge Flap

[]

+TED

+LED

+LED

+LED

+LED

Deflection
Limits (deg)

-30 30

-30 30

-30 30

-30 30

-30 40

-30 40

0 3O

0 3O

0 30

0 30

TEL=Trailing Edge Left, TED=Trailing Edge Down, LED=Leading Edge down

Figure 29. Aerodynamic Control Surfaces

No Load Rate

Limits (deg/sec)

60

6O

100

100

80

8O

20

20

20

20

The rate response requirements were determined from the handling qualities

requirements of the aircraft using an MDA developed advanced design software tool called
VECTOR.

This program defines multiple aerodynamic surface requirements for a number of

different aircraft handling qualities requirements. Specific handling qualities goals are

defined and VECTOR computes the aerodynamic deflections and rates required to

achieve these goals. Specific inputs to the VECTOR program are aerodynamic data,
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geometry data, handling qualities data, and thrust data. VECTOR calculates the rates and
deflections required to trim the aircraft, augment the aircraft to desired dynamics, negate
inertial coupling effects, and to coordinate a stability axis roll.

The specific handling qualities goals input into VECTOR are the steady state roll rate
or time to a given bank angle, the roll mode time constant, the short period frequency and
damping, and the dutch roll frequency and damping. These data were input into VECTOR,
and control rates were determined at several points of Mach number and altitude covering
the flight envelope (including ranges in angle of attack up to 20 degrees at each point). The
results output from VECTOR were rate requirements for thetails, ailerons, and trailing edge
flaps as a function of angle of attack for each Mach and altitude considered. These rate
requirements define an overall rate requirement for each of these surfaces, (Figure 29). The
vectoring requirements of the SCF pitch/yaw vectoring were not investigated with the
VECTOR program, instead the rate requirements were set equal to the aerodynamic tail
surfaces' rate requirements.

2.4. Control System Architecture Definition

The architecture definition for the SCIP Program began in SCIP1, where a DMICS
(Reference 20) type of methodology was used to partition control functions based on
mission level requirements.

The ASTOVL MFVT aircraft has a high degree of interaction between the aerodynamic
and propulsion control effectors. In wingborn flight the aircraft motion is primarily
controlled by the aerodynamic surfaces. While hovering, the aircraft motion is controlled
entirely by the propulsion system. During the transition from wingborn flight to jetborn
flight, both the aerodynamic controls and the propulsion controls must be coordinated to
a high degree to achieve a smooth and controlled transition. To define the IFPC
requirements, a DMICS type methodology was used to determine the functional
responsibilities and the control law requirements of the aircraft and propulsion systems for
each aircraft.

In SCIP1, a model of the MFVT Model 4629 was developed, and a mathematical

partitioning of the global aircraft/propulsion system was performed to determine a division
of the control functions required of the aircraft and propulsion systems. This partitioning
was performed for low speed wingbom flight, transitional flight to hover, and in jetborn
flight. Since the control variables and aircraft model are very similar to the MFVT Model
4636, the results of this study were used to define a preliminary partitioning of the control
functions. The partitioning resulted in an IFPC design where the engine controller directly
controls anything that affects engine stability and performance while responding to flight
control nozzle vector and thrust requests. As such, the flight controller commands the
control action which is required to achieve the pilot commanded motion and has direct
control over all nonpropulsion subsystem actuators. This partitioning is described below.

The process of subsystem partitioning was performed as follows:

1. Create a global model of the aircraft and propulsion system.

2. Normalize the aircraft model states, inputs, and outputs.
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. Analyze the interactions of states, inputs, and outputs using

control power analyses, and observability analyses.

4. Divide the aircraft into functional subsystems.

modal analyses,

The first task was to create a global model of the aircraft and propulsion system. This

was done by developing a nonlinear model of the MFVT Model 4629 in the MCAIR Modular

Six-Degree-of-Freedom (MODSDF) nonreal-time simulation package. The airframe model

included the basic aerodynamics and equations of motion ofthe aircraft. The engine model
consisted of a state variable model of the Pratt & Whitney STF 868A cruise engine with the

SCF nozzle. Models of the inlets, cactus ducts, lift nozzles, trimmer nozzle, and reaction

control ducts and valves, were integrated with the engine and aircraft models. Other

effects, including ram drag, jet induced lift loss, and jet induced pitching moment, were

also integrated into the model. Once the nonlinear aircraft model was developed, a
MODSDF routine was written to trim the aircraft. This trim routine calculates 1-g equilibrium

points for the aircraft for different mach numbers and altitudes. The variables used for

trimming the aircraft are shown in Figure 30. Next, a MODSDF routine was written which
defines small perturbations of states, inputs and outputs about the trim points, and

computes a linear state variable model of the global aircraft and propulsion system for a

particular flight condition. These states, inputs, and outputs are shown in Figure 31,

Figure 32 and Figure 33, respectively.

Trim Variable

Normal Force

Longitudinal Force

Side Force

Pitching Moment

Rolling Moment

Yawing Moment

Jetborn

Power Lever Angle

Total Effective

Thrust Angle

Relative Wind Angle

Semi-Jetborn

Transition

Switch Between PLA

and Pitch Angle at 45

Degrees Effective Thrust
Angle

Switch Between

Effective Thrust

Angle and PLA at
45 Degrees Effective

Thrust Angle

Rela_ve Wind

Angle

Wingborn

Pitch Angle

PLA

Relative Wind

Angle

Differential Between
Uft Nozzle Areas

and Ventral
Nozzle Area

Differential Between
Uff Nozzle Areas

Yaw Reaction
Control Force

Blend Differential

IJft/VenUal
Nozzle Areas
and DifferenEal Tail

Blend Differential
Lilt Nozzle Areas

and Differential Aileron

Blend Yaw RCS

and Collective Tall

DifferentialTall

(Rudder Sign
Convention)

Differential

Aileron

Collective Tall

(Rudder Sign
Convention)

Figure 30. Trim Routine
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Variable Description Units

U
V
W
P
PHI

Q
THETA

R
PSI
NL
NH
TBT

- x body axis velocity component
- y body axis velocity component
- z body axis velocity component
- x body axis rotational component
- roll attitude

- y body axis rotational component
- pitch attitude

- z body axis rotational component
- heading
- low rotor physical speed
- high rotor physical speed
- high pressure turbine blade metal temperature

Figure 31. Global Aircraft/Propulsion States

(ft/sec)
(ft/sec)
(ft/sec)
(rad/sec)
(rad)
(rad/sec)
(rad)
(rad/sec)
(rad)
(rpm)
(rpm)
(deg R)

Variable

DTAIL

CTAIL
DFAIL
DRAIL
DFTEF
DRTEF
DFLEI
DRTEI

DFLEO
DRLEO
PLA
CW
FW
A8TC
PV
YV
DLNV
DLN
CLNT
DLNT
CPRCS

DPRCS
YRCS

Description

- differential vertical tail
- collective vertical tail
- differential aileron

- aileron "droop"
- differential trailing edge flap
- collective trailing edge flap

- differential inboard leading edge flap
- collective inboard leading edge flap

- differential outboard leading edge flap
- collective outboard leading edge flap
- power lever angle
- compressor variable vane
- fan variable vane

- cruise nozzle area request
- cruise nozzle pitch angle
- cruise nozzle yaw angle
- differential liftvs. ventral area
- differential main liftarea

- collective lift nozzle angle
- differential lift nozzle angle
- collective pitch rcs area
- differential pitch rcs area
- yaw rcs area

Units

(deg)
(deg)

(deg)
(deg)
(deg)
(deg)
(deg)
(deg)

(deg)
(deg)
(%)
(deg)

(deg)
(in**2)
(deg)

(deg)
(in**2)
(in**2)
(deg)
(deg)
(in**2)
(in**2)
(in**2)

Figure 32. Global Aircraft/Propulsion Inputs
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Variable Description Units

U -x body axis velocity component (ft/sec)
V - y body axis velocity component (ft/sec)
W - z body axis velocity component (ft/sec)
P - x body axis rotational component (rad/sec)
PHI - roll attitude (rad)

Q - y body axis rotational component (rad/sec)
THETA - pitch attitude (rad)
R - z body axis rotational component (rad/sec)
PSI - heading (rad)
NXCG - axial load factor (g)
NYCG - lateral load factor (g)
NZCG - normal load factor (g)

P2 - total pressure at engine face (psi)
T2 - total temperature at engine face (deg R)
NL - low rotor physical speed (rpm)
NH - high rotor physical speed (rpm)
TBT - high pressure turbine blade metal temperature (deg R)
P4 - main burner exit total pressure (psi)
WFE - main burner fuel flow (Ibm/hr)

P6 - total pressure at augmentor face (psi)
T6 - total temperature at augmentor face (deg R)

Figure 33. Global Aircraft/Propulsion Outputs

The second task was to normalize the units of the states, inputs, and outputs of the
state variable model so that they have the same relative effect on the dynamics of the

overall system. The small perturbation engine states and outputs were normalized so that
the units were in terms of a percent of their nominal values. The small perturbation aircraft
states and outputs were scaled relative to the forward body velocity, in such a way that the

energy required to achieve a unit change in the linear or rotational rate in any axis was the
same. The units of the aircraft and engine inputs were scaled to equal percentages of their

maximum range.

The third task was to partition the global aircraft into subsystems. The partitioning tools
were developed in the SCIP program and are listed in Figure 34. The state, input, and
output modal analyses were done by first transforming the state coordinates of the model
so that the new state coordinates represent states that are the actual modes which

correspond to the characteristic value of the dynamic model. Afterwards, the
transformation matrix is studied to determine the relative effect each state and input has

on a particular mode. The controllability analysis was done by examining the controllability

grammian for each input to determine the relative controllability of each input to each state.
The observability analysis was done by examining the output matrix (the C matrix of the
normalized (A, B, C, D) state variable quadruple). The steady state coupling analysis was
performed by examining the relative steady state values of the transfer function matrix
elements of the output responses to the inputs. The high frequency coupling analysis was
done by examining the relative values of the direct feedthrough terms of the state variable
model (the D matrix of the normalized (A, B, C, D) state variable quadruple).
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Subsystem Partitioning Tools

Normalization

State Modal Analysis
Input Modal Analysis
Output Modal Analysis

Controllability Analysis
Observability Analysis

Input Power to State Rates
Output Information from States

Steady State Coupling
High Frequency Coupling

Figure 34. Partitioning Tools

The final task was to divide the aircraft model into functional subsystems. The results
of the analyses were combined to define the overall interactions of the states, inputs, and
outputs. Groups of states, inputs, and outputs were defined for which the relative
interactions of states, inputs and outputs between the groups was much less than the

interactions of the states, inputs, and outputs within each group. This partitioning was
performed for the flight conditions shown in Figure 35, and include wingborn, jetborn, and
semi-jetborn conditions. The results of the 90-knt semi-jetborn condition are shown in
Figure36. The aircraft was divided into three subsystems: longitudinal aircraft,
lateral/directional aircraft, and engine. The partitioning forjetborn and wingbom flight were
also divisible into these three subsystems, although the controls and sensed outputs are
only a subset of those shown in Figure 36.

Partitioning Flight Conditions

All Jetborn

All Wingborn

10 Knts
30 Knts
50 Knts
70 Knts
90 Knts
110 Knts
110 Knts
130 Knts

150 Knts170 Knts

Figure 35. Flight Conditions (250 ft)
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Request to

Subsystem States Inputs Sensors Other Subsystems

Longitudinal u, w, q, G

Lateral/
Directional

Engine

v, p, 4), r,_

NL, NH, TBT

DTAIL
DRAIL

DPRCS

CTAIL
DFAIL

DPRCS
YRCS

PLA
A8TC

PV
YV

CW
FVV

DLNV
DLN
CLNT
DLNT

u,w, q, O,
RX, nz

NL, NH, TBT,
P2, T2, P4,
WFE, P6,
T6, v, w

PLA
A8TC

PV
YV

DLN
DLNV

PLA
YV

DLN

Figure 36. Partition for Low Speed 90 Knts

Based on the results of this mathematical partitioning, the aircraft control responsibility
of the MFVT Model 4636 was partitioned between the aircraft and the propulsion systems

by giving the propulsion system control over anything that affects engine stability and
performance. This responsibility includes control of the engine core processes, as well as
control over the SCF nozzle actuators, the lift and ventral nozzle actuators, the diverter
doors to the ventral nozzle ducts and the lift nozzle ducts, and the RCS bleed valve. The

responsibility of the aircraft system includes actuation of the aerodynamic effectors, the
RCS nozzles, and all external doors. The aircraft system will also issue commands to the
propulsion system to effect the motion of the aircraft. These commands include the thrust
split between the engine nozzles and nozzle vectoring commands.

From this functional partitioning of the control, a basic approach was developed for

the design of the IFPC system where the engine and nozzles are controlled by an engine
control system, and the motion of the aircraft is controlled by a flight control system. The
flight control system will actuate the aerodynamic surfaces and issue commands to the
propulsion system. The propulsion system will control the engine process and respond
to flight control system requests. The integrated flight and propulsion controls will thus act
together to achieve all pilot commands.
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This distributed approach to aircraft control also has many advantages from a system

integrity point of view. These benefits include:

1. Minimizes loss of control that is due to faults or external damage. Survivability is

increased since functions are split between controllers using input voting planes to

isolate faults to one controller only.

2. Facilitates aircraft installation as nondistributed controllers tend to become too

large with too much wiring.

3. Minimizes the number of items that cross the firewall and the amount of data

exchanged between the aircraft and engine.

4. Permits stand alone controller modes to increase survivability and facilitate testing

of the IFPC subsystems.

5. Minimizes the complexity of engine and aircraft test equipment through localization
of functions
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3. SCIP2 AND SCIP3 - LOGIC AND SIMULATION DEVELOPMENT AND TEST

3.1. Airframe and Ground Effects Model Definition

In SCIP1, a six degree of freedom nonlinear model of the 4629 aircraft was developed,

including a static Jet Induced Iteractions (JII) model and a static Hot Gas Ingestion (HGI)

model. Pratt &Whitney delivered atransient model ofthe propulsion system to MDA. MDA

then integrated the engine model with the aircraft model and delivered the integrated

model back to Pratt & Whitney.

Then, in SCIP1, the aircraft model was installed in MDA's Modular Six Degree of

Freedom (MODSDF) simulation program. MODSDF is a simulation program used for

non-real time nonlinear analysis. This program contains interfaces for input/output and

graphics plotting, an interface to a standard set of equations of motion, and interfaces to
standard and user defined analyses programs. Then, this model was used to perform the

IFPC functional partitioning described in Section 2.4.

Then, in PROLIFIC Task 2, the SCIP MODSDF model was modified to fit the 4636

aircraft geometry, the aerodynamic database was expanded to include the entire flight

envelope, new static JII and HGI data were added, and a transient state variable engine
model of the STF 952 was integrated with the model.

The aircraft model was completed in SCIP2, where a dynamic JII model was inserted.

The aircraft model was documented in Reference 21, and delivered to Pratt & Whitney,

NASA-ARC, and NASA-LeRC. NASA-ARC used Reference 21 to install the aircraft

model into the SCIP simulation. The following describes the model sources for the aircraft

geometry, the aerodynamic forces and moments, the nozzle forces and moments, the RCS
forces and moments, the JII forces and moments, the inlet forces and moments, and the

inlet temperature and pressure. The details of the construction of the model are in

Reference 21.

3.1.1. Aircraft Geometry

The aircraft geometry model specifies the location of the aircraft's reference center of

gravity, center of lift, wing area, and wing span. The model also specifies the aircraft's

weight and moments of inertia.

The center of gravity calculation is based on the center of gravity trace for the US/UK

air superiority mission from Figure 2-68 in Reference 1. This center of gravity calculation

is valid for the wing tanks empty and the feed tank full, covering fuel ranges between 5%
and 60% of full internal fuel. The center of gravity is also a function of the stores, and this

model proves a simple increment for either a fully loaded configuration or a configuration

with all weapons expended. This model also provides an increment for the change in

center of gravity due to the gear position.

The moment of inertia model is a linear interpolation between values corresponding

to inertias which were calculated at combat weight and landing weight for the US/UK air

superiority mission. It includes an increment for gear position.
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3.1.2. Aerodynamic Forces and Moments

The aerodynamic forces and moments are defined using standard dimensionalized
aerodynamic coefficients. The coefficients were derived from our Advanced Design Wind
Tunnel test of the 4.2% scale model of the ASTOVL Model 279-4629E. This test provided
nonlinear data for the static coefficients for lift, sideforce, rolling moment, pitching moment,
and yawing moment at Mach 0.2. This data was rescaled to fit the slightly larger Model 4636
aircraft. Then, the data was extended to Mach 2.0 using the Woodward Analysis Method,
verified on F-15, F/A-18, and Model 279-3 data. Drag data is from linear analysis also
verified on F-15, F/A-18, and 279-3 data.

The dynamic coefficients were generated using program DYNAMIC, Reference 22.
This program computes the dynamic derivatives using a strip theory approach modified
to remove Mach number and angle of attack limitations, and has been verified with F- 15
data.

The aerodynamic data was extended down to zero airspeed using predictions from
the US/UK Program, which were based on flat plate drag predictions integrated over
appropriate cross section areas of the aircraft. The resulting aerodynamic coefficients are
blended with the Mach 0.2 aerodynamic data as described in Reference 21.

3.1.3. Nozzle Forces and Moments

The nozzle forces and moments are computed from the nozzle thrusts and thrust
vector angles received from the propulsion model and the nozzle thrust center locations

relative to the aircraft center of gravity. Also the cruise nozzle boattail drag is computed as
part of the nozzle model.

The cruise nozzle boattail drag is computed from three tables which are valid for dry
power, minimum afterburner, and maximum afterburner. These tables are a function of
Mach number and cruise nozzle pressure ratio. These tables were derived from a database
at MCAIR which describes boatail drag data for various types of nozzles. If the afterburner

fuel flow is zero, then the nozzle boattail drag coefficient is looked up from the dry power
table. If the afterburner fuel flow is not zero, then the boattail drag is computed by linearly
interpolating between the maximum afterburner table and the minimum afterburner table
as a function of the afterburner fuel flow.

In the nozzle model, the aircraft body axis components of the forces dueto the nozzles'
thrusts and thrust vector angles are calculated. The displacements of the nozzles from the
center of gravity are computed, the forces and moments due to the nozzles' thrusts are

computed, and the forces on the aircraft are computed by simply adding the individual
components. The moments are computed by summing the body axis components of each
nozzle's thrust multiplied by the appropriate moment arm.

3.1.4. Reaction Control System Forces and Moments

The RCS valves' forces and moments are computed from the RCS valves' thrusts from

the propulsion model and the RCS valves' locations relative to the aircraft center of gravity.
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Each RCS valve assembly is built on the end of the cylindrical pipe used to port the
airflow from the RCS bleed valve on the compressor to the valve assembly location,

located near the tails. The valve assembly consists of a sleeve valve which rotates around

the end of the duct pipe, allowing flow to exit from either the dorsal or the ventral side of

the assembly. Also, a cock valve is located on the end of the duct pipe which regulates

airflow to either port (for the left RCS assembly) or starboard (for the right RCS assembly).

The RCS valve assembly displacements from the center of gravity are used to compute

the moments due to the forces resulting from the RCS valves' thrusts.

3.1.5. Jet Induced Interaction Forces and Moments

The jet induced forces and moments are computed based on static test data from the

JII testing of the 6.02% scale jet effects model of the 279-4629E on the MCAIR Jet Induced

Test Apparatus. Static test data for jet induced lift and pitching moment were given to

NASA-ARC, who then generated dynamic jet induced lift and pitching moment as a
function of lift nozzle thrust, lift nozzle vector angle, airspeed, and height above the runway

for aircraft configurations with LIDs and without LIDs.

The jet induced lift and pitching moment calculations are computed as a function of
airspeed, height above the runway, jet vector angle, jet thrust, and Lift Improvement Device

(LID) deployment.

Jet induced rolling moment is computed as a function of the aircraft Euler roll angle.

If the magnitude of the roll angle is lessthan 10 degrees, the coefficient of JII rolling moment
is read directly from a table derived from the test data. If the magnitude of the roll angle

is greater than 10 degrees, then the roll angle is outside of the region of the test data, and

an equation is used to compute the coefficient. This equation is a second order

extrapolation of the test data beyond 10 degrees roll angle.

Finally, the jet induced forces and moments are computed by dimensionalizing the

coefficients based on the jet thrust and the equivalent nozzle diameter.

3.1.6. Inlet Forces and Moments

The forces and moments due to the inlet include inlet drag and ram drag. The inlet drag

includes the additive frictional effects due to the inlet duct cross sectional area being

smaller throughout its length than the inlet, and spill and boundary layer effects at the inlet

lip. The ram drag is the impulse created by the momentum change due to stagnating the

flow at the airmass velocity.

The inlet centroid displacements from the center of gravity are the assumed points at

which the ram drag forces are acting. To account for the high suction pressure created by

turning the flow in front of the secondary inlets, the ram drag forces at the secondary inlets

are assumed to act at a point above the inlet plane. The main inlet ram drag is calculated
as a function of inlet airflow and the normalized open area of the main and secondary inlets.

The airflow through both of the main inlets is first calculated using the ratio of main inlet

area to total inlet area (the secondary inlet area is 1.4 times the main inlet area). Then the

airflow is split between the left and right main inlets. The secondary inlet ram drag is

calculated similarly to the main inlet ram drag calculations.

39



The inlet cowl drag is computed using a table look-up that is a function of Mach
number, angle of attack, and corrected airflow. This table was derived from a database at

MCAIR which describes inlet drag for various types of inlets. Finally, the drag coefficient
is dimensionalized and the drag forces are converted to body axes to compute the
resultant inlet forces and moments.

3.1.7. Inlet Temperature and Pressure

The inlet temperature and pressure model computes the total temperature and
pressure at the fan face. The inlet pressure calculation consists of a pressure recovery
factor multiplied to the total pressure. The pressure recovery was derived from a MCAIR
database of pressure recovery data for various types of inlets. Pressure distortion data is
not available for this engine/inlet combination, and thus is not modeled.

The inlet temperature model computes temperature rise due to hot gas ingestion. This
temperature is set equal to the total temperature if the sum of the lift and ventral nozzles'
thrusts are less than 80% of the total thrust (an arbitrary threshold). Temperature recovery
and distortion are not modeled. When the lift nozzle's thrust exceeds 80% of the total, both
near and far field temperature rise due to hot gas ingestion are looked up from tables.
These data are based on empirical prediction procedures based on data from tests of the
9.2% model of the 279-3 in the NASA-LeRC 9'X15' wind tunnel performed as part of the
MCAIR/NASA-LeRC Hot Gas Ingestion Test Program. Water tank flow visualization
testing of the 6% scale model of the 279-4629E aircraft at the McDonnell Douglas
Research Labs' Hover Research Facility has shown that the near field component of the
hot gas ingestion is eliminated when the main inlet doors are closed. Therefore, the near
field component is scaled by the main inlet open area to eliminate that contribution when
the main inlet is closed.

3.2. Propulsion Model

The engine which was selected for the SCIP PROGRAM is designated as STF 952A.
The STF 952A is a twin spool, mixed flow, afterburning turbofan engine.

The fan for the STF 952A is packaged in three highly loaded stages. Fan size is
reduced by increasing airfoil loading via increased rotational speeds. Low aspect ratio

airfoils, though heavy, are required for the increased demands. The efficiency penalty
introduced by increasing maximum tip speed to 1700 ft/sec is reduced through the use of
a 3- D viscous design system and swept blades. To minimize the effect of low aspect ratio
airfoils and high rotational speeds on the weight of the fan rotor, hollow fan blades are
utilized.

The four stage high pressure compressor incorporates many of the same advanced
technologies which were used in the fan. Three-D viscous aerodynamic design allows
for high efficiencies with the increased stage loading.

An Axially Staged Triangular Alignment (ASTRAL) combustor is used in the STF 952A.

An ASTRAL combustor is significantly shorter in length when compared to a conventional
combustor. Improved axial and circumferential zoning allows higher combustor exit
temperature and reduced pressure loss without negative impact on smoke, pattern factor,

or combustion efficiency. Diffuser pressure loss for this design is reduced using an
advanced stepped diffuser design.
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The High Pressure Turbine (HPT) and Low Pressure Turbine (LPT) require advanced

aerodynamic efficiency with reduced cooling air at high temperatures. Improved cooling
effectiveness blades and vanes, improved thermal barrier coatings, advanced blade outer

seals, advanced single crystal blades, and high temperature intermetallic vanes each play

a part in reducing the STF 952A turbine cooling requirements. Improvements in turbine

efficiency will be realized through advanced 3-D viscous unsteady aerodynamic design

technique and passive blade tip clearance control. Avaneless, counterrotating, "stage and

a half" LPT is an attractive concept for the STF 952 principally because the resulting engine

configuration offers size, weight, cost, and performance advantages relative to the more

conventional two stage design.

The engine operates as a conventional takeoff and landing mixed flow turbofan engine

with all thrust exiting the enginethrough the Spherical Convergent Flap (SCF) nozzle which

is capable of both _+20 degrees of pitch and yaw vectoring. The SCF also has full blocking

capability (ability to go to zero convergent area).

In the transition flight mode, the lift and Reaction Control System (RCS) ducts are

pressurized so that thrust may be ported out through combinations of the lift, trim, RCS,
or SCF nozzles. The lift and trim nozzles have variable area and vector capability, _+ 20

degrees for each, to provide engine pressure ratio control and to provide aircraft pitch and

roll control while in transition or vertical flight mode. The lift nozzles are designed to provide
both collective and differential roll control.

3.2.1. State Variable Model

The engine is modeled in three sections. The first section (the fan face to the mixing

plane) consists of a piece-wise linear representation of the thermodynamic processes

involved, based on partial derivatives of engine states about fixed operating points. This
is referred to as the State Variable Model (SVM). The second section (downstream of

mixing plane) includes performance calculations of the augmentor and nozzles. The last

section models the dynamics of the Reaction Control System (RCS) bleed line.

The state variable modeling technique extends the classical linearized dynamictheory,

which employs partial derivatives about a single operating point, by including multiple

model points. Bivariant interpolation between these model points is used to define a base

point which moves with time as engine power changes. Adjustments for non- steady state

operation and augmentation provide accurate steady state and transient characteristics

of an engine operating between idle and maximum power settings.

The engine is modeled using three types of variables: states, inputs, and outputs.

States represent energy storage parameters like speed and metal temperature. Inputs are

variables which perturb the systems, such as fuel flow. Outputs are parameters of interest

other than the state and input variables.

Dynamically, the SVM is characterized by differential equations relating the time rate

of change of the state variables to the state variables themselves and the input parameters.
States are obtained transiently by calculating the derivatives and numerically integrating
forward in time.
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The linearized time rate of change of a state is formed as the sum of partial derivatives
with respect to pertinent parameters using the Chain Rule. Using low spool rotor speed

(XNL) as an example,

d(XNL ) OXNL  XNL __
dT = aXNL (XNL- XNLb) +_ (XNH- XNHb) + aX_NLOWFE

(W'FE- WFEb) + .......

XNL = low spool rotor speed

XNH = high spool rotor speed
WFE = main burner fuel flow

and "b" denotes a base operating point.

For convenience, the equation is broken into two parts, one dealing with the partials

with respect to states, the other dealing with partials with respect to inputs. The full set of
differential equations can then be written in matrix notation as:

X = A (_) + B(AU)

where:

X = Vector of state derivatives.

A = Matrix of partial derivatives relating state derivatives to states.

B = Matrix of partial derivatives relating state derivatives to inputs.

z_X = Vector of differences between the actual and base point values of the states.
The base points are values of the states about which the partial derivatives were defined.

AU = The difference between the actual and base point values of the input
parameters.

Likewise, outputs are calculated as functions of the states and input parameters. In
matrix notation,

AY = C (AX) + D(AU)

where:

AY = Vector of differences between the actual and base point value of the outputs. The

base points are values of the outputs about which the partial derivatives were defined.

C = Matrix of partial derivatives relating outputs to states.

D = Matrix of partial derivatives relating outputs to inputs.

z_X and AU are as defined above.

The partial derivatives (A, B, C and D matrices) that are used in the state variable model

are derived from an aerodynamic/thermodynamic model generated using the NASA

ROCket Engine Transient Simulation (ROCETS) system, consisting of detailed component
representations which accurately characterize transient performance.
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The matrices of partial derivatives were generated at a particular flight condition (sea

level static). In order to simulate other flight conditions, parameters must be shifted

according to corrected parameter theory to the actual flight condition.

The technique employed is to shift the states and inputs from the actual flight condition

to the flight condition at which the matrices were generated. The matrix operations are
carried out at the base condition and the derivatives and outputs then shifted back to the

actual flight condition.

A simplified representation of the state variable model including the states and inputs

modeled is shown in Figure 37.
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Figure 37. Schematic of Matrix Operations

3.2.2. Mixed Flow Model

The mixed flow model represents the augmentor volume dynamics, the lift duct

volume dynamics, the lift duct valve pressure losses, augmentor, and nozzles, Figure 38.

The model uses mixing plane (station 61) total pressure & temperature from the state

variable model. The augmentor pressure and the list duct pressure are dynamic states
which are used to calculate the nozzle flows. The nozzle flows are summed and used in

calculating the flow parameter which is an input for the state variable model. The flow

parameter is the feedback variable which allows the mixed flow model to communicate
with the state variable model.
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3.2.3. RCS Model

The dynamics of the RCS bleed line and nozzle are characterized by two transfer
functions, Figure 39. The RCS Nozzle areas, the RCS shutoff valve position, and the HPC
exit total pressure & temperature are used to calculated the steady state RCS shutoff valve
flow and the steady state RCS nozzle total pressure. The transfer functions are then applied
to the steady state values. Thrust for each of the RCS is then calculated. The transfer
functions were developed from a detailed model of the RCS bleed line. The transfer
function approach was used because the detailed model is too computationally intensive
for simulator application.
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Figure 38. Schematic of Mixed Flow Model

3.3. IFPC Control Logic Design

This section describes the SCIP flight control laws. A description of the control modes
that were implemented in the SCIP simulation is followed by a description of the control
logic which implements the control modes.
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3.3.1. Control Modes

The control modes for the SCIP simulation were chosen as described in Section 2.2.

These modes also include two conventional modes, one for maneuvering flight (a flaps up

mode) and the other for a conventional approach and landing (a flaps down mode). The
STOVL control modes include one STO mode, three transition modes, and two hover

modes. Two additional transition modes were added during the simulation. The final

control laws implemented two conventional modes (these do not use the propulsive lift

system), and five transition modes, as listed below (STO- MR ended up being exactly the

same as TRAN- RCAH):

Conventional Modes:

CONV

LAND
Conventional Up & Away (Flaps Up)

Conventional Landing (Flaps Down)

STO Mode:

STO-MR STO - Manual Rotation

Transition Modes:

TRAN

TRAN- RCAH

ACT- MT

ACT-AT
VET

Transition

Transition with Rate Command/Attitude Hold

Acceleration Transition - Manual Throttle

Acceleration Transition - Autothrottle

Velocity Transition
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Each transition mode smoothly blends to the hover mode with pitch and roll attitude
command on the stick. In each transition mode, Translational Rate Command (TRC)
systems,

TRC-MT
TRC-AT

Translational Rate Command - Manual Throttle
Translational Rate Command - Autothrottle

are pilot selectable below 80 knots airspeed by pressing a mode switch button on the stick.

TRC switches the pitch and roll attitude on the stick to groundtrack and crosstrack velocity
commands.

During the simulation, a transition mode was set by the flight simulation engineers.
The pilot could select from the conventional mode to the transition mode by lowering the
gear handle. This action also lowers the flaps and the gears.

The cockpit controls included McFadden stick and rudder pedals set to AV-8 type
force gradients, and an AV-8 type throttle/nozzle lever quadrant from the Kestral aircraft.
Thumbwheels for the ACT- MT and ACT-AT modes were available on either the stick or
the throttle.

The conventional modes are described in more detail in Section 3.3.1.1, the transition
modes in 3.3.1.2, and the TRC mode in Section 3.3.1.3.

3.3.1.1. Conventional Modes

CONV Conventional Up & Away (Flaps Up)

The conventional mode is normally entered from a flaps down mode (Conventional
Landing, STO, or Transition) by raising the gear handle. The nozzle lever must be in the
zero degree stop for the mode switch to occur. In conventional mode, the longitudinal stick
commands pitch rate, with a steady stick input holding a constant normal acceleration
above comer speed (320 KCAS for the 4629E). Below four tenths comer speed (128
knots), a steady stick input holds the angle of attack. In between, a steady stick input
controls a blend of normal acceleration and angle of attack. The lateral stick commands
stability axis roll rate. The throttle controls engine power. The nozzle lever is not used,
being inactive even if it is accidentally pushed over the zero degree stop.

LAND Conventional Landing (Flaps Down)

The conventional landing mode is selected from the conventional mode by lowering
the gear handle. The controls operate similar to the conventional mode, with some

changes to the handling qualities in that a pitch rate feedback is blended with the angle
of attack feedback to improve the pitch response to airspeed excursions.

3.3.1.2. Transition Modes

The transition modes are illustrated in Figure 40. During the simulation the control
mode corresponding to the gear down position on the gear handle was set by a flight
simulation engineer, and the mode was selected during the flight by the pilot using the gear
handle. Each mode is described below.
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TRAN Transition

The command systems forTRAN mode are shown in Figure 40. This mode is similar
to theAV- 8Bwith improved handling qualities.The longitudinal stick response is the same
as LAND mode, but blending from angle of attack command in transition to pitch attitude
command in hover as afunction of airspeed. Lateralstick commands roll rate in transition
blending to roll attitude along the same airspeed schedule. The rudder pedals command
sideslip/turn coordination in transition blending to heading rate command in hover.

The throttle commands the effective thrust vector magnitude, with maximum thrust
occurring at the MIL power detent setting. The A/B settings are disabled by the mode
switch to transition, commanding the same thrust as if the lever was in the MIL power
detent. An altitude ratedamping feedback isadded to the throttle, blending inasa function
of airspeed to improve height response in hover. The nozzle lever commands effective
thrust vector angle.

TRAN-RCAH Transition with Rate Command/Attitude Hold

This mode is the same as TRAN, except that the stick control laws are replaced with

a pitch/roll rate with pitch/roll attitude hold command system in transition, blending to
pitch/roll attitude command in hover along the same airspeed schedule as TRAN mode.
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ACT-MT Acceleration Transition - Manual Throttle

This mode is the same as TRAN- RCAH, except control of the equivalent thrust vector

angle is removed from the nozzle lever. Instead, a thumbwheel commands groundtrack

acceleration through a control law that commands the equivalent thrust vector angle to

achieve the desired acceleration response.

ACT-AT Acceleration Transition - Autothrottle

This mode is the same as ACT-MT, except that control of the equivalent thrust vector

magnitude on the throttle is replaced by an automatic throttle which becomes a maximum

AOA/flightpath/thrust consent control as shown in Figure 41. The operation of the
autothrottle control is described in the following example.

Aft stop on the

Kestral throttle

Idle

FULL 16 ° AOA
AFT or -8 ° Ay

or -800 fpm hdot

Engine
Stop

- hdot or

--Ay -"

Would have a detent here,
but one was not available
on the Kestral throttle

l ramp on
Forward the

Kestral throttle

- + hdot or/

Ay / 1200fpm hdot8 ° max AOA /

or 0 ° Ay /

orOfpm hdot 4° MILmax AOA

or 4 ° Ay FULL

or + 400 fpm FORWARD

Max

A/B

(Not to Scale)

Figure 41. Autothrottle as Max AOA/Flightpath/Attitude Rate Control

With the aircraft in transition mode at steady level flight at 200 knots, the pilot selects

a 0.1g deceleration with the thumbwheel. The aircraft initially decelerates by vectoring
forward and by reducing power along a deceleration schedule chosen by the IFPC. The
throttle now indicates a maximum AOA, and would indicate a maximum AOA somewhere

between 10 and 16 degrees with the throttle left at the setting it was at for power-for-

level-flight. If there is a zero stick input the aircraft will begin to descend. The pilot controls

his desired flight path with the stick as in conventional flight, eventually reaching the
maximum AOA indicated on the throttle control as the aircraft continues to slow.
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As the aircraft continues to slow, the angle of attack is held by the IFPC to that indicated
on the throttle. The pilot sets the desired glide slope with pitch stick commands, and the
IFPC drives the inertial flight path vector to the attitude symbol offset by an amount, AT,
determined by the throttle position (i.e. z_7 = 8 degrees minus the AOA indicated on the
throttle), resulting in a constant angle of attack approach. Thus the throttle can also be

thought of as a ATcontrol, since the flight path can also be controlled by holding a constant
attitude with the stick and resetting the AOA with the throttle.

Under normal conditions, after setting the speed control the pilot would set the throttle

to 8 degrees max AOA, the nominal optimum AOAfor transition. If increased thrust margin
is desired, the throttle can also act as a thrust consent control, since the thrust needed at

a constant airspeed and flight path varies with the AOA. As shown in Figure 42, for a 25,000
lb. aircraft weight, the thrust margin varies by 20 percent as the maximum AOA chosen by
the throttle control varies from 8 to 17 degrees. The pilot can increase the thrust margin
by setting a higher maximum AOA or by backing off on the deceleration command.

If the aircraft is wingbome and decelerating in response to the thumbwheel and the
pilot moves the throttle forward to a maximum AOA below the current AOA, then the IFPC
will couple the thrust vectoring to follow the new maximum AOA profile set by the throttle.
If the pilot increases the maximum AOA, the IFPC will increase the AOA until either that

value of AOA is reached or until the thrust vector limits to 0 degrees, in which case the IFPC
will decouple the thrust vectoring, and the flight path is controlled by pitch stick inputs as
in conventional flight. The aircraft continues the deceleration in response to the
thumbwheel, and will recouple the thrust vectoring when the new max AOA is reached.

As the speed decreases through 56 knots the throttle blends to an altitude rate

command with the 8 degree maximum AOA setting corresponding to zero ft/sec altitude
rate, so that the throttle commands zero altitude rate when it is set at the optimum AOA for
transition.

VET Velocity Transition

The VET mode is the same as ACT-AT except that control of deceleration is removed

from the thumbwheel. Instead, the nozzle lever commands airspeed in transition, blending
to groundspeed in hover, using a control law which commands the equivalent thrust vector
angle to achieve the desired response.
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3.3.1.3. Hover Modes

The transition modes described in the previous section generally blend to the same
pitch attitude/roll attitude/yaw rate command system in hovering flight. However, there are
some differences in hovering flight, due to the level of augmentation provided in the thrust
axes. These differences are described in this section. Also the TRC control mode in

hovering flight is described in this section.

TRAN and TRAN- RCAH

These two modes have identical control laws in hovering flight. Horizontal translations
are achieved through control of aircraft attitude. Forward/aft translations can also be
commanded using the nozzle lever to control thrust vector angle. Height control is
achieved by commanding engine power using the throttle. The throttle has a limited
authority altitude rate damper, thus for small inputs, the throttle acts as an altitude rate
controller.

ACT-MT

Although longitudinal stick commands pitch attitude, in this mode, the groundtrack
velocity response to attitude changes is held to zero by the thumbwheel control laws,
which close the loop on groundtrack acceleration. Thus horizontal translations are
achieved by coordinating thumbwheel inputs with lateral stick inputs. Forward/aft
translations are achieved with no pitch attitude changes, instead the pitch attitude is set
for proper gear contact at touchdown.

ACT-AT

The hovering command systems for this mode is the same as ACT-AT except that a
full authority altitude rate command system employing proportional plus integral control
is on the throttle. As was seen in the simulation testing, this throttle control law provided
better control of sink rate in ground effect.

VET

The VET mode has the same throttle control law as ACT-AT. As in the ACT modes,
pitch attitude is decoupled from groundtrack velocity by the nozzle lever control laws which
close the loop on groundtrack velocity. Again, forward/aft translations are achieved with
no pitch attitude changes.

TRC-MTandTRC-AT

In all of the transition control modes, a TRC mode may be engaged below 80 knots

using a button on the stick. When TRC is engaged, the stick controls groundtrack and
crosstrack velocity. The pilot translates by pointing the stick in the direction of desired
travel, the velocity in that direction is proportional to the stick travel. In the ACT modes this
mode switch disables the thumbwheel. Also in VET mode, this mode switch disables the
nozzle lever.

The only difference in the modes with TRC engaged is the autothrottle. Thus, for
TRAN, TRAN-RCAH, and ACT- MT, the TRC control laws are identical and use the man ual

throttle with the height damper. This TRC mode is referred to as TRC-MT. For ACT-AT
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and VET modes, the TRC control laws are also identical and use the autothrottle with

proportional plus integral altitude rate control. This TRC mode is referred to as TRC-AT.

3.3.2. Control Law Description

The IFPC Logic was designed assuming that the control functions are partitioned
between the propulsion control and the flight control as determined in the mathematical

partitioning performed in SCIP1. The flight control receives pilot commands and aircraft

sensor information, processing them to produce commands to the aircraft actuators and

requests to the propulsion control system. The propulsion controller actuates the nozzles'

thrust magnitudes and angles in response to requests from the flight control.

The flight control logic is divided into two modules, termed the Core Control Laws and

the Control Mixer, as shown in Figure 43. The Core Control Laws process the pilot
commands and sensor information, and compute aircraft motion requests, passing them

to the Control Mixer in terms of commanded aircraft axial, normal, pitch, roll, and yaw

accelerations. The Control Mixer transforms the requested aircraft accelerations to aircraft

surface actuator commands and propulsion system nozzle thrust magnitude and angle

requests. This approach has the advantage that the structure of the Core Control Laws

is mostly independent of the propulsion system control configuration, so that

modifications required for different types of propulsion systems are confined to the Control
Mixer.

The design methodology for the Core Control Laws is based on experience gained

from the AV- 8B, F/A- 18, S/MTD, and YF- 23 Programs. Nonlinear feedbacks are utilized

to negate inertial cross-coupling and gravity vector position effects to decouple the
aircraft axes. Additional feedback gains scheduled with flight condition deaugment the

aircraft to a neutrally stable airframe. Primary feedbacks are used to reaugment the aircraft

to provide the desired flying qualities and stability margins.

3.3.2.1. Longitudinal Axis Core Control Laws

The longitudinal axis control laws compute the Control Mixer command, PCMD, based
on the longitudinal stick position. First, nonlinear feedbacks are used which deaugment

and decouple the longitudinal axis to provide a neutrally stable deaugmented aircraft

longitudinal axis. The control laws then use feedback to reaugment the aircraft according

to the control mode selected by the pilot. The conventional landing (LAND) and the

baseline transition (TRAN) control laws are shown in Figure 44. During the simulation

testing, the landing mode for a particular run was preset at the simulation engineer's

console. The pilot switches from CONV mode to a landing mode with the gear/flap handle,
which also selects gears/flaps down. The LAND mode control laws shown in Figure 44

execute with Ke = O, always. The LAND mode provides the equivalent system closed loop

dynamics as shown in Figure 44.
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When landing in TRAN mode, lowering the gear/flap handle activates the powered lift
system and switches the control laws. During the propulsion system's transition to
powered lift mode, the outer skin doors are opened, the lift nozzles are repositioned, and
the inner diverter doors are opened to pressurize the transport ducts. In the TRAN mode,
Figure 44, the control laws use a pitch attitude feedback blended in as a function of
airspeed using the Ke schedule, Figure 45. At the same time, the angle of attack feedback
is blended out using the same schedule. This feedback scheme provides the equivalent

system responses shown in Figure 44, where the resulting equivalent systems show that
the stick command blends from a pitch rate command to a pitch attitude command in a
natural manner by augmenting the pitch attitude pole to the bare airframe L_ value as the
pitch attitude gain varies from zero to one.

All other landing modes use a RCAH command system in the longitudinal axis. The
RCAH control laws use the landing mode control laws from Figure 44 as an inner loop, with
the Ke schedule set to 1 at all airspeeds, as shown in Figure 46. A pitch RCAH command

system is generated by adding a proportional plus integral filter in the forward loop,
Figure 47, and provides a typical second order short period pitch rate response to stick
inputs. Attitude hold is provided, as the output of the integrator loads up to the proper
attitude command to hold altitude. A blend to an attitude command system is achieved by

scheduling the integrator gain to zero as a function of airspeed using the schedule in
Figure 45.

When below 80 knots airspeed, a precision hover mode switch is enabled which allows
the pilot to select to TRC system. The translational rate control laws for the pitch axis also
use the attitude control laws from Figure 46 as an inner loop. As shown in Figure 48, the
TRC control laws are implemented as an outer loop driving the attitude command system
control laws. The resulting equivalent systems dynamics, Figure 48, show that the velocity

damping is augmented by these control laws so that the stick commands inertial
groundtrack velocity. Integral control is provided so that the same trimmed stick position
commands the same groundtrack velocity in all flight conditions.
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Lateral�Directional Core Control Laws

The lateral/directional control laws also utilize nonlinear decoupling and

deaugmenting feedbacks, as shown in Figure 230. These feedbacks provide the control
laws with commands for stability axis roll and yaw acceleration for which the aircraft's

response is approximately the integral of the respective command variable. Feedbacks

are then used to reaugment the aircraft for proper flying qualities for the directional axis.

Lateral Axis Core Control Laws

The lateral axis control laws compute the Control Mixer command, RBCMD, based on

the lateral stick position.

Figure 49 shows the CONV mode lateral control laws, consisting of a simple roll rate
feedback with a gain to set the equivalent system roll rate damping. The equivalent system

damping, shown in Figure 50, is set proportional tothe airspeed. In LAND mode, the lateral
control laws are the same as in CONV mode.

The TRAN mode control laws are shown in Figure 51. The control laws blend from a

rate to an attitude command system along the same schedule used in the pitch axis,

Figure 45. A proportional plus integral gain is used to stabilize the aircraft when hovering

in ground effect. This instability is caused by a positive I._ derivative of roll acceleration due

to roll angle that occurs with asymmetric suckdown on one wing coupled with the fountain

upwash on the opposite wing for nonzero roll angles. The _ derivative is a function of gear
height, an integrator gain of about 3 is sufficient to stabilize the aircraft at all gear heights.

All other landing modes use a RCAH command system in the lateral axis. The RCAH
control laws use the landing mode control laws from Figure 51 as an inner loop, with the

Ke schedule set to 1 at all airspeeds, as shown in Figure 52. This inner loop structure

provides an attitude command system which is used to build a roll RCAH command

system by adding a proportional plus integral filter in the forward loop, Figure 53, and
provides a typical first order roll rate response at higher airspeeds. Attitude hold is

provided, as the output of the integrator loads up to the proper attitude command to hold
attitude. A blend to an attitude command system is achieved by scheduling the integrator

gain to zero as a function of airspeed using the schedule in Figure 45. The feedback gains
are also scheduled with airspeed to provide a second order attitude response in hover.

When below 80 knots airspeed, a precision hover mode switch is enabled which allows

the pilot to select to TRC system. The translational rate control laws for the roll axis also
use the attitude control laws from Figure 52 as an inner loop. As shown in Figure 54, the

TRC control laws are implemented as an outer loop driving the attitude command system

control laws. The resulting equivalent systems dynamics, Figure 54, show that the velocity

damping is augmented by these control laws so that the lateral stick commands inertial
crosstrack velocity. Integral control is provided so that the same trimmed stick position
commands the same crosstrack velocity in all flight conditions.
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Directional Axis Core Control Laws

The directional axis control laws compute the Control Mixer command, YBCMD,

based on the rudder pedal position.

The directional control laws are shown in Figure 55, with the sideslip and yaw rate

equivalent system closed loop responses. In CONV mode, the control system commands

stability axis yaw acceleration with a sideslip error for turn coordination and sideslip rate

to improve dutch roll damping. The yaw rate feed back is set to zero. The equivalent system
dutch roll frequency is specified by computing the control power from the tails available

for augmentation, and is specified proportional to airspeed. The control laws for LAND
mode are the same as CONV.

The directional axis control laws for all of the powered lift modes use the structure

shown in Figure 55, where the sideslip and sideslip rate feedbacks are scheduled down

to zero as airspeed decreases, as shown in Figure 56. Along a complementary schedule,

the yaw rate feedback is increased from zero to its proper value in hover, as shown in

Figure 56. This scheduling provides a blend from a sideslip/turn coordination command

system at higher airspeeds to a yaw rate command system in hovering flight.

Thrust Axis Core Control Laws

The thrust axis control laws compute the Control Mixer commands, FXCMD and

FZCMD, from the throttle position and either the nozzle lever position or the thumbwheel
position, depending on the control mode.
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CONV and LAND Modes

When one of these modes is engaged, the powered lift system is off and the nozzle

lever and the thumbwheel are inactive. The throttle lever position sets PLA according to

the schedule in Figure 57. The core control laws set FZCMD to zero, and computes

FXCMD by multiplying a rate limited PLA command by the maximum available thrust (a
feedback from the propulsion control), Figure 58.

TRAN and TRAN-RCAH Modes

When one of these modes is engaged, the powered lift system is active, and the thrust

vector angle is commanded by the nozzle lever, Figure 59. The throttle commands PLA

along the same schedule as the CONV and LAND modes, Figure 57.

The thrust axis core control laws are shown in Figure 60. Above 80 knots airspeed,

the throttle and nozzle lever positions are converted to thrust and thrust vector commands,

which are then converted to FXCMD and FZCMD commands through a simple polar to

Cartesian transformation. Below 80 knots, a height damping feedback is blended in to

improve altitude rate response to the throttle in hovering flight.

Thrust Axis Deaugmentation

For the other STOVL modes, ACT-MT, ACT-AT, and VET, the core control laws use

a design procedure whereby deaugmentation feedbacks are used to provide the control
laws with a command variable which is approximately the integral of the controlled
variable.

A wind referenced deaugmentation network for the thrust axis is shown in Figure 61.

Using standard equations of motion for path velocity, Vp = V_cos_, and angle of attack,

o_, and neglecting engine dynamics, it can be shown that the path velocity and angle of

attack are approximately proportional to the integrals of the command variables, 6NL, and
_'L.

A similar ground referenced deaugmentation network for the thrust axis is shown in
Figure 62. Here, the groundtrack velocity and the altitude rate are approximately the

integrals of the command variables, 6NL, and _'L.

In the autothrottle control modes, ACT-AT and VET, the throttle controls angle of

attack at higher transition speeds, and altitude rate at lower speeds. Thus these two

deaugmentation networks are blended together along the same airspeed schedule as the

control laws, using the pitch axis rate to attitude command blending schedule, as shown

in Figure 63.

ACT-MT Mode

In this mode the throttle control laws are the same as TRAN and TRAN-RCAH. The

nozzle lever is made inactive, and a thumbwheel controls inertial groundtrack acceleration.
Figure 64 shows the command schedule, with a maximum thumbwheel deflection of +100

degrees (+ is forward and - is aft) commanding 10 ft/sec 2 of groundtrack acceleration.

The thumbwheel control laws, Figure 65, are taken from Reference 9. The thumbwheel

commands grountrack acceleration with a zero thumbwheel input holding the current
velocity.
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The complete thrust axis control laws are in Figure 66. The throttle control laws are

similar to Figure 60, except the output of the polar to cartesian conversion is passed

through the deaugmentation network. The thumbwheel command is deaugmented and
converted to an equivalent thrust vector command before being passed to the polar to

cartesian conversion.

ACT-AT Mode

The ACT-AT mode uses the thumbwheel control laws from Figure 65. Thus the

ACT-AT Mode is the same as ACT-MT except for the throttle control laws. ACT-AT

employs an autothrottle that controls the aircraft's approach angle of attack at higher

transition airspeeds, and altitude rate at lower airspeeds. Figure 67 illustrates the
conversion of the throttle lever position to commanded angle of attack and altitude rate.

At higher airspeeds the throttle controls angle of attack referenced to 8 degrees. The

control laws shown in Figure 68 result in a first order angle of attack response with a natural

frequency proportional to airspeed. This result can be derived through straightforward
calculation by assuming that the angle of attack response is approximately the integral of

the command, 5TL. The inertially referenced control laws in Figure 69 are similar to those

in Figure 68, providing a first order altitude rate response to throttle inputs.

The complete autothrottle control laws are shown in Figure 70, where the wind
referenced control laws are blended with the inertially referenced control laws between 60

and 80 knots airspeed.

VET Mode

The VET mode employs the same autothrottle control laws as the ACT-AT mode. The
thumbwheel is made inactive and replaced with the nozzle lever, which commands

aircraft's speed (instead of thrust vector angle). The nozzle lever to speed command
schedule, Figure 71, has a 6 degree deadband at the forward stop. When the mode is

engaged, the nozzle lever is in the deadband. The control laws sample the current speed,
and holds that speed until the nozzle lever is moved out of the deadband. Six degrees

nozzle lever position indicates 180 knots, the hover stop at 82 degrees commands zero

speed. The nozzle lever may be moved over the hover stop to the braking stop, which
commands -47 knots aft speed.

At high transition speeds the nozzle lever controls path velocity, using the control laws
in Figure 72, which provide a first order airspeed response to nozzle lever position as

shown in Figure 72. At low transition speeds, the nozzle lever commands groundtrack

velocity, Figure 73, using control laws simUar to Figure 72. These control laws are blended

together, Figure 74, using the pitch axis rate/attitude command blending schedule.
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3.3.2.2. Control Mixer

The control mixer computes the aircraft surface actuator commands, RCS actuator
commands, and the thrust magnitude and thrust vector angle commands to the propulsion
controller. These commands are computed using the commands received from the core

control laws, PCMD, RBCMD, YBCMD, FXCMD, FZCMD. The mixing schedules also
depend on the maximum available thrust and nozzle vector angles received as feedbacks
from the propulsion controller, and some surface position feedbacks from the actuators.

The control mixer uses the basic mixer scheduling logic shown in Figure 75. In this
pitch axis example, the control power of each control, M_I, and M_2, are computed. The
command is then partitioned between the two controls using the gain schedules K1, and
K2. Ignoring actuator dynamics, the resulting pitch acceleration on the aircraft is
approximately equal to the pitch acceleration commanded by the core control laws.

This basic mixer logic is used in three different ways:

. Commands are scheduled to redundant effectors using the gains K1 and K2,
with K1 corresponding to the maximum deflection of the first effector and K2
corresponding to the maximum deflection of the second effector. This

schedule causes both effectors to limit out at the same time, and provides
maximum control power at maximum control command.

. Commands are scheduled between aerodynamic and powered lift control

effectors as a function of airspeed by multiplying K1 by another gain, Kv, with
0 < K_ < 1, and the other gain, K2, by (1-K_). When K = 1 the aerodynamic
control are used exclusively, when K = 0 the propulsive lift controls are used
exclusively, in between both aero and propulsive controls are used.

. The control effectors are reconfigured using multipliers on the gains K_ and K2.
Setting the multiplier to zero removes the control effector from the command

and readjusts the other gains to the other effectors to compensate, so that
essentially the core control laws do not see a change in the gain from PCMD
to the aircraft's pitch acceleration. This procedure was used in the SCIP

simulation to turn the RCS system off and on simply by setting a gain to 0 or 1,
respectively.

Longitudinal Axis Mixer Logic

From the command signal, PCMD, the longitudinal axis mixer logic computes
commands to differential tail, cruise nozzle pitch vector, collective RCS sleeve valves, and

ventral nozzle thrust, as shown in Figure 76. PCMD is converted to a pitching moment
command. The pitching moment due to flaps (when flaps are down for takeoff and landing)
is subtracted off, producing a signal representing the pitching moment needed from the
rest of the controls. The pitching moment command is then partitioned between the
controls using the logic in Figure 75. F160 is the aero/prop blending schedule. The cruise
nozzle pitch vectoring is not used in powered lift mode. The command to the RCS is

washed out so that no RCS is commanded in the steady state, preventing long term down
blowing of the RCS for achieving pitch trim. The table in Figure 76 shows the gain values
for turning the pitch RCS off and on.
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Lateral Axis Mixer Logic

From the command signal, RBCMD, the lateral axis mixer logic computes commands

to differential aileron, differential trailing edge flaps, differential lift nozzle thrust, and

differential RCS sleeve valve area, Figure 77. RBCMD is first converted to a rolling moment

command. The rolling moment due to directional control effector commands are

subtracted off, producing a signal representing the rolling moment needed from the roll

controls. The rolling moment command is then partitioned to the control effectors. The

table in Figure 77 shows the gain settings for turning the RCS or lift nozzle vectoring off and

on.

PCMD----P
Iy

KiM61 + K2M_)2

First Effector

Second Effector

Aircraft Model

qAxr_raf-t = PCMD

KIIy
61

KIM61 + K2M62 PCMD

K2Iy
62

KIM61 + K2M62 PCMD

Figure 75. Basic Mixer Scheduling Logic - Pitch Axis Generic Example
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RCMD_F160 * [KmLLAtL

1.0 I

+ KTEF LTF.F] + (1 - F160)* [K_.LLDzL + KRsoLRsD]I
I

LAI L = Ldueto aileron

LTEF = L due to trailing edge flop

LDZ L = L due to differential lift nozzle thrust

LRSD = L due to differential RCS sleeve valve area

LDIR = L due to directional control surface deflection

Vectoring On Vectoring On I Vectoring Off

RCS Off RCS On I RCS On

Kozq_ 0.3 0.3 0.3

KRS D 0 8 8

-J (F160)* KAIL

(F160)* KTEF

__. Differentia I
Aileron

(deg)

_ Differential
TEF

(deg)

Differential

D._ t---_ uft N°zzle
(1 -F160)* KDZL Z-Axis

Thrust

(Ib)

Differential
RCS

_(1 -F160)* K_ o _ SleeveValve
Area

(in.=)

Figure 77. Lateral Axis Mixer Logic
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Directional Axis Mixer Logic

From the command signal, YBCMD, the directional axis mixer logic computes
commands to collective tail, cruise nozzle yaw vector, differential lift nozzle pitch vector,

ventral nozzle lateral vector, and RCS cock valve area, Figure 78. YBCMD is first converted

to a yawing moment command, producing a signal representing the yawing moment

needed from the directional controls. The yawing moment command is then partitioned
to the control effectors. The cruise nozzle yaw vectoring is not used in powered lift mode.

The table in Figure 78 shows the gain settings for turning the RCS or lift nozzle vectoring
oft and on.

Thrust Axis Mixer Logic

From the command signals, FXCMD and FZCMD, the thrust axis mixer logic computes

the collective lift nozzle thrusts, the collective lift nozzle vector angles, and the cruise nozzle
thrust. The basic thrust vectoring schedule, Figure 79, uses all lift nozzle thrust between

vector angles between 68 and 102 degrees (as measure from the aft waterline), achieving
the vectoring through collective vectoring of the lift nozzle pitch vector angles. Some

ventral nozzle thrust is also commanded to balance pitching moment. Below 68 degrees,
the resultant vector angle is achieved by partially porting thrust through the lift nozzles and
partially through the cruise nozzles. The logic in Figure 79 converts FXCMD and FZCMD

into commanded axial thrust to the cruise nozzle (FXCCMD), axial thrust to the lift nozzles

(FXLCMD, effectively commanding collective pitch vectoring), and vertical thrust from the
lift nozzles (FXLCMD). In Figure 80, the axial and vertical thrust commands to the lift
nozzles are summed with differential thrust commands from the lateral and directional

axes, and converted to thrust and pitch vector commands using a simple rectangular to
polar conversion.

YBCMD

NDX L = N

NDX V = N

NRC c = N

KDXL

KDxv
KRCC

F160(KRuDNRu D + KyvNw) + (1 - F160)(KDxLNDx L + KDxvNDx V + KRccNRcc) I (dog)(Rudder Sign Convention)

NRU D = N due to collective tail |

Nyv = N due to Cruise NozzJe Yaw Angle _ FlSO*Kyv
due to differential lift nozzle X-Axis thurst

due to ventraJ Nozzle Lateral angle

clue to PCS cook Valve area

Vectoring On
RCS Off

Vectoring On Vecloring Off

RCS On RCS On

MK290 0

2O 2O

8 8

MK290

2O

0

Figure 78. Directional Axis Mixer Logic

Cruise Nozzle
Yaw Vector
(deg)

Not Cony Mode

1 XL_ Diffemmia_ Lift
(1 - F160)K D Nozzle X-Axis

Thrust
0b)

Ventral Nozzle
_1 I1 F160)K D Lateral Veotor

"rE - (dog)

___ RCS Co_ v.ve
(1 - F160)KRc Area

4. =)
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Figure 79. Thrust Axis Mixer Logic
Resolution of Thrust Commands to Lift and Cruise Nozzles
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3.3.3. Propulsion Control System Requirements

The results of the DMICS program suggests that each partitioned subsystem be

initially treated as "General Actuators". The General Actuator Model (GAM) for the

propulsion system is a simplified model that predicts the gross steady state and transient
characteristics of the propulsion system. The general actuator model describes the basic

propulsion system requirements as defined by the aircraft as well as the propulsion

systems dynamic response characteristics. Thus, the GAM serves two very useful

purposes. It provides the flight control designer with a propulsion system performance
specification for use in the initial stages of flight control design as well as providing the

propulsion control designer with precise requirements specification. Initial general

actuator model requirements are defined through airframe and propulsion system

designers negotiations. After preliminary review of propulsion system response
characteristics, iterations on the general actuator model fine tune the propulsion system

requirements specification.

The general actuator model developed for SCIP consists of simplified dynamic

representations of three propulsion subsystems: the engine, exhaust nozzles system, and

the reaction control system (RCS). Each piece of the General Actuator Model provides

distinct functions. The Engine model provides an estimate of steady state thrust capability

and small signal closed loop thrust response of 10 (radians/second.) Gross transient

response is defined from the rate limited acceleration and deceleration requirements. The

engine outputs required by the nozzle model and the reaction control system model are
proved from correlation's with thrust levels. The Nozzle model provides the basic exhaust

nozzle system dynamics and calculates the thrust splits between the spherical convergent

flap main nozzle, left and right lift nozzles and trim flap nozzle based upon the available

thrust provided from the engine model and the exhaust nozzle system geometry. The
reaction control system model calculates the RCS forces from the compressor discharge

characteristics provided from the engine model.

An overview of the General Actuator Model is shown in Figure 81. Preliminary

evaluations of the general actuator model performed in the PROLIFIC indicated that if the

propulsion system responded as a 10 radian/second lag, with thrust acceleration rates of

25 percent maximum dry power thrust/second acceleration capability, vehicle control

system performance was acceptable. Thrust deceleration rates as high as 100 percent
maximum dry power thrust/sec were found desirable to minimize landing bounce.

Additional testing performed at NASA Ames also found that the propulsion system thrust

response requirement should be minimum of 5 radians/second and a minimum propulsion

system thrust acceleration/deceleration rates of 15 percent/second provided acceptable

system response.
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• Figure 81. General Actuator Model

The requirement to minimize thrust fluctuations during RCS bleed transients creates

a dynamic disturbance rejection requirement for the propulsion system control design.

RCS bleed usage was not well defined dudng the infancy of the flight control design.
Therefore, AV- 8B Harrier data was chosen to provide typical RCS bleed time histories for
both total magnitude and spectral content. Review of the AV-8B data RCS time histories

provides the basis of the 20 radian/second compression system response requirement.

The propulsion system control design requirements are the culmination of numerous

airframe studies, some of which utilize the general actuator model, and propulsion system
design practices. The propulsion system control design requirements, source and
approach are shown in Table I.
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TABLE I - SCIP/PROLIFIC Propulsion Control Requirements

REQUIREMENT

10 radian/second thrust

response

RCS bleed disturbance

rejection

10000 Lb/Sec side-to-
side thrust

+_ 20 degrees @ 40 de-

grees/second Pitch/Yaw
axial thrust vectoring

EPR control during up &

away, transition and hov-
er

Lift and trim thrust vec-

toring

Control loop stability
margins >60" phase

margin and 10 dB gain
margin

Thrust magnitude and
direction and max. avail-
able thrust esimates

SOURCE

• Transfer function model

(SCIP I)

General Actuator engine
model

• AV-8B RCS time histo-
ries

• 8 PPS max. bleed (PRO-

LIFIC)

Control power study
(PROLIFIC)

Control power study

(PROLIFIC)

Engine stall protection

Control power study
(PROLIFIC)

• Design practice

• ICD

APPROACH

• Thrust request fed-for-

ward to slave regulator

Minimize Compressor
Operating Line excur-
sions with Overall Pres-

sure Ratio (OPR) slave

regulator with 20 radian/
second response.

200 percent/Sec capabil-

ity on nozzle flaps give
20000 Lb/Sec thrust re-
distribution

• 200 percent/Sec capabil-

ity on nozzle actuators

Minimize Fan Operating
Line excursions with En-

gine Pressure Ratio
(EPR) slave regulator
with 20 radian/response.

Independent scheduling
of lift and trim flap posi-
sions

MVC robustness as-

sessed by singular val-
ues

• On-board model pro-
vides estimates

3.3.4. Propulsion Control/Vehicle Control Interface

The partitioned elements of the control system also provide the basis for the interface
characteristics document, which defines the required communication paths between the

elements. The data exchange between the vehicle and propulsion controllers is outlined

in Table II. In general, the vehicle requests an overall thrust level from the propulsion

system, as well as thrust distribution between the main nozzle, lift nozzles, and lift trim
nozzle. Thrust vector angle requests for each of the nozzles are also given. The engine
control returns estimates of thrust and vector angle for each of the nozzles, an estimate of

89



the maximum dry thrust available, and status flags indicating which mode (axial thrust or
propulsive lift) the propulsion system is in, and which modes it is capable of attaining.

TABLE II - Data Exchange Between Vehicle (Airframe) and Propulsion Controls

Vehicle To Propulsion Propulsion To Vehicle

Gross Thrust Level Request Gross Thrust Feedback

Thrust Split Request Nozzle Thrust Split Feebacks

Axial Nozzle Pitch Angle Req. Lift Nozzle Vector Angles & Trim

Axial Nozzle Yaw Angle Req. Axial Yaw Feedback

TRM & LiftNozzle Vector Angle Req. Maximum Allowable Dry Thrust

Vehicle AOA And Sideslip Maximum Allowable Thrust Splits

Ambient Pressure Maximum Allowable Vector Angles

Mach Number Fault And Status Words

Fault And Status Words

3.3.5. STOVL Unique Propulsion System Requirements

As seen in the propulsion system requirements specification Table I, operation in a
STOVL aircraft places unique requirements on the propulsion system. First, the propulsion
system must produce, distribute and vector thrust. Second, the engine must maintain
nearly constant thrust despite large, rapid fluctuations in compressor bleed flowto the RCS

system. Third, fan stability must be maintained despite aircraft operation at extreme angles
of attack, and with far-field hot gas ingestion. Fourth, since the vectored thrust is, in fact,

a flight control effector, the engine thrust and vectoring response must be sufficiently rapid
to not interfere with flight control dynamics. Control power studies for the MFVT aircraft
found that increasing the rate at which thrust could be redistributed from side to side, and
the ability to rapidly vector the thrust from the lift and trim nozzles, reduced the amount of

RCS bleed which was required. In order to assure adequate propulsive lift during hot day
it was desired to keep RCS bleed below 5 percent of core flow. As a result, differential roll

thrust rates of at least 10000 lb./second, and lift and trim nozzles vector capability of _20
degrees at 40 degrees/second were required.

Previous STOVL and missile gas ingestion studies have shown that large, rapid
excursions in engine inlet temperature will cause fan stalls, regardless of what actions the

control system may take. It is therefore incumbent on the airframe to prevent jet exhaust
gas from being directly recirculated to the engine inlet. However, far-field gas and
operation at extreme angles of attack and sideslip still present fan stability threats which
are worse than those typically encountered in up-and-away operation. It is therefore
imperative that the control system have precise control of the compression system
operating lines.
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3.3.6. Control Approach

Figure 82 shows an overview of the STOVL engine control which was developed under

the PROUFIC program. The propulsion control system requirements, and the approaches

taken to meet these requirements are summarized in Table I. A 20 rad/sec, regulator was
desired to maintain accurate control of the compression system pressure ratios and

provide rapid thrust response. Because of the high degree of coupling between the fan

operating line and the compressor operating line inherent to a turbofan engine, and

because the dynamic response required, it was decided that multivariable control design

techniques would be used for the dynamic design of the control regulator logic. The MVC

was designed using traditional Linear Quadratic Gaussion/Loop Transfer Recovery

(LOG/LTR) techiques to ensure rapid response and maximum robustness. The
multivariable control (MVC) requests fuel flow, compressor vane position and total exhaust

jet throat area to regulate Overall Pressure Ratio (OPR), Engine Pressure Ratio (EPR), and

High Rotor Speed (N2).

Preliminary propulsion system studies indicated that the percent of total thrust
delivered by each nozzle is approximately equal to the nozzle's percentage of the total

throat area. The nozzle control (NC) logic then uses the thrust distribution request from the
vehicle control to determine the throat area of each of the nozzles. The NC performs fault

detection on each of the nozzle actuators and returns status flags to the vehicle control

advising which modes of operation are attainable.

It was desired to have estimates of the thrust and vector of each of the nozzles to be

fed back to the vehicle. Furthermore, it was desired to have an estimate of the maximum

available dry thrust, to prevent the vehicle control from requesting transition to hover when

the engine cannot provide sufficient vertical force. In order to provide these estimates, a
self-tuning on-board real-time engine model was included into the software.

The presence of the on-board model allows accurate estimates of unmeasured

engine variables, such as fan and compressor airflow, thrust turbine inlet temperature, and
fan discharge total pressure to be fed to the control laws. The thrust estimate was

compared to thrust request to provide closed-loop thrust control.

Figure 83 shows a MIL-IDLE-MIL thrust transient, while Figure 84 and Figure 85
show the fan and compressor pressure ratio excursions during the transients. It can be

seen that the acceleration (25 percent/second) and deceleration (100 percent/second) are

met, while the compression system pressure ratios operation do not exceed the stall level

pressure ratios.
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3.4. Transition Envelope Sensitivity and Control Power Analyses

In SCIP2, analyses were performed to compute transition envelope sensitivities and
the control power available during transition and hovering flight, using the MODSDF model

of the 4636 aircraft. Th e objective of these two tasks was to investigate the envelope of flight
conditions for which the aircraft would normally be expected to operate in transition and
hover, including the control power available for these flight conditions, and any limitations
that may be imposed due to the aircraft state or lack of control power.

MDA's technical approach was in four steps. Step 1 generated computer software

modules in MODSDF, called aerodynamic analysis options, which perform trim sweeps.
The trim sweeps plot the trimmed aircraft states, surface deflections, nozzle thrusts, and
nozzle vector angles, as a function of various flight condition variables. Step 2 defined
schedules which blend the actuator commands between aerodynamic and propulsive
control effectors as the aircraft transitions between wingborne and jetborne flight. Step 3
analyzed the envelope of operable flight conditions in hover and transition, including the
capability of the aircraft to climb or descend, to accelerate and decelerate along the flight
path, and to pitch, roll, and yaw.

The results show that the 4636 aircraft has a wide envelope of operable flight
conditions in transition and hover with no significant limits imposed by lack of control
capability. The control capability meets the US/UK CEM and MIL-STD-83300 control
power requirements using nozzle vectoring and thrust modulation alone, and without
using the reaction control system.

Section 3.4.1 describes the development of the gain schedules which define the
transition of the control effector usage between aerodynamic and propulsive control
effectors.

Section 3.4.2 details the transition envelope sensitivity analyses and presents results
defining the control capability of the aircraft in transitioning flight. The transition envelope
is described using two types of engineering plots. One type is a plot of the envelope of
achievable flight path angles as a function of airspeed at a constant value of effective jet
angle, and indicates the non- accelerating flight conditions that can be reached. The

second type is a plot of the envelope of effective jet angles that can occur (depending on
the power setting) as a function of velocity, given a particular aircraft state. This plot is used
to show the sensitivity of the transition envelope to various aircraft states, including
differing values of flight path angle, of maximum angle of attack (or pitch attitude), of
acceleration (or deceleration) along the flight path, and of crosswind velocity.

Each subsection of Section 3.4.2 details the analysis cases which plot aircraft states

and control capability for trimmed steady flight and for"trimmed" flight with nonzero steady
acceleration along the flight path.

Section 3.4.2.1 describes the transition envelope as the flight path achievable at
velocities ranging from 0 to 200 knots at various effective jet angles ranging from 0 to 90

degrees. Envelope limits at maximum angle of attack, and maximum and minimum engine
power are shown.

Section 3.4.2.2 describes the sensitivity of the steady level flight transition envelope to
maximum allowable pitch attitude, and control power available at the trim points along the
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maximum pitch attitude profile. The trim sweep is steady level flight with varying limits on

allowable pitch attitude from 6 to 16 degrees.

Section 3.4.2.3 describes the level flight accelerating and decelerating transition

envelopes. The trim sweep is level flight along a maximum 8 degree pitch attitude profile

with acceleration along the flight path varying between -0.25 and +0.20 g's. A

deceleration of -0.21 g's corresponds to the US/UK CEM requirement for a decelerating
transition from 200 knots to hover in 50 seconds. Control power available along the 8

degree maximum pitch attitude profile is also described.

Section 3.4.2.4 describes the transition envelope limits in steady ascents and

descents. The trim sweeps are steady descents along a maximum 8 degree pitch attitude

profile with flight path varying between -9 and 0 degrees, and steady ascents along a
maximum 8 degree angle of attack profile with flight path varying between 0 and 12

degrees. Control power available along the maximum pitch attitude descent profiles and

the maximum angle of attack ascent profiles are described.

Section 3.4.2.5 describes the steady level flight transition envelopes in crosswinds.

The trim sweep is steady level flight along a maximum 8 degree pitch attitude profile in

crosswinds ranging from 0 to 20 knots. Control power available in crosswinds along the

maximum pitch attitude profile is described.

Section 3.4.2.6 describes the sensitivity of the level flight transition envelope to shifts

in center of gravity location. The trim sweep is steady level flight along a maximum 8 degree
pitch attitude profile with center of gravity ranging between 37 and 43%. Longitudinal

control power variations to these center of gravity shifts are described.

Section 3.4.2.7 describes the sensitivity of the level flight transition envelope to

variations in predicted ram drag. The trim sweep is steady level flight along a maximum

8 degree pitch attitude profile with +_20% variation in ram drag.

Section 3.4.2.6 describes the control power available in hovering flight, with the wind

velocities up to 40 knots and coming from all directions relative to the aircraft axes.

Table III is a list of variable names and abbreviations used in the figures of this section.

3.4.1. Transition Control Effector Blending Schedules

The control mixer logic contains schedules which blend the control effector actuation

from all aerodynamic effectors to all propulsive effectors during the transition from
wingborne to jetborne flight. The schedules were developed by analyzing a trim sweep of

steady level flight conditions along an 8 degree maximum pitch attitude profile with velocity

varying from 0 to 200 knots in 5 knot increments. This profile was chosen since a normal

operating attitude of 8 degrees in transition is used on the AV-8 and subsequent analysis
showed that this profile is well within the level flight transition corridor, with plenty of margin

for generating lift without exceeding the controllable angle of attack, while providing

adequate line of sight for the pilot.

The primary aerodynamic and propulsive effectors are described in Figure 1 and

Figure 27, respectively. The reaction control system is not used in these analyses since
the results indicate that adequate control power exists without the use of the reaction

controls.
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Table III. Variable Names and Abbreviations

!QDTNUT Total nose up pitch acceleration capability

'QDTNUA Nose up pitch acceleration capability from aerodynamic effectors

QDTNUP Nose up pitch acceleration capability from propulsive effectors

QDTNDT Total nose down pitch acceleration capability

QDTNDA Nose down pitch acceleration capability from aerodyanmic effectors

QDTNDP Nose down pitch acceleration capability from propulsive effectors

PDTWUT Total left wing up rollacceleration capability

PDTWUA Left wing up roll acceleration capability from aerodynamic effectors

PDTWUP Left wing up roll acceleration capability from propulsive effectors

PDTWDT Total left wing down roll acceleration capability

PDTVVDA Left wing down roll acceleration capability from aerodynamic effectors

PDTWDP Left wing down roll acceleration capability from propulsive effectors

RDTNLT Total nose left yaw acceleration capability

RDTNLA Nose left yaw acceleration capability from aerodynamic effectors

RDTNLP Nose left yaw acceleration capability from propulsive effectors

RDTNRT Total nose right yaw acceleration capability

RDTNRA Nose right yaw acceleration capability from aerodynamic effectors

RDTNRP Nose right yaw acceleration capability from propulsive effectors

THETA Pitch angle in degrees

AXSCMD Acceleration along the flight path in g's

WL Aircraft waterline

LWU Left wing up

LWD Left wing down

NR Nose right

AOA Angle of Attack

GW Gross Weight

STOL Short Takeoff & Landing

NTRIM'r Trim Yawing Moment (Ib-ft)

LTRIMT Trim Rolling Moment (Ib-ft)

PM Pitching Moment

YM Yawing Moment

RM Rolling Moment

THETAJ ;Effective Jet Angle Measured from Aft Waterline
SIGMA Flight Path Azimuth Angle

VKTAS Knots True Air Speed
ALT Altitude

MTRIMT Trim Pitching Moment

MVENT Pitching Moment from Ventral Nozzle

MBASCA Aerodynamic Static Pitching Moment

MBASCP Propulsive Pitching Moment from Ram Drag, JII, Boattail Drag
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The pitch axis schedule blends differential tail with the thrust difference between the
lift nozzles and the ventral nozzle. This schedule was developed by studying the differential

tail deflection required to trim in transition with the lift and ventral nozzles' thrusts balanced

to produce zero pitching moment, using the level flight trim sweep previously described

in this section. Figure 86 shows the trimmed effective jet angle as measured from the aft

waterline, and the corresponding trimmed pitch attitude as a function of velocity. At
velocities from 200 knots down to 154 knots, the aircraft is trimmed in wingborne flight.

Below 154 knots, the maximum pitch attitude is reached and the thrust is vectored

downward to produce the required additional lift.

In Figure 87, the trimmed differential tail deflections are shown, indicating that the
trimmed differential tail deflection is about -10 degrees at wingborne velocities, and

reverses through 0 degrees at about 45 knots, as the opposing pitching moment produced

by ram drag begins to dominate the basic static aerodynamic pitching moment of the

aircraft body. Figure 88 shows the corresponding ratio of the ventral nozzle's thrust to the
sum of the lift and ventral nozzles' thrusts which achieves a balance resulting in a net zero

pitching moment from these nozzles. Since the trimmed differential tail naturally

approaches zero as jetborne velocities are reached, the pitch axis schedule was chosen
to command all differential tail during the high end transition, and zero differential tail below
40 knots. Thus this schedule blends the actuator commands from aerodynamic to

propulsive effectors along a profile which requires low trimmed pitching moment from
propulsive effectors. Subsequent control power analyses (Section 3.4.2) showed that

adequate tail power exists above 100 knots, so that the schedule was chosen to command
all differential tail above this airspeed. This upper end airspeed value also ensures that the

command to propulsive effectors is faded out before a wingborne flight condition is

reached (where the ventral nozzle thrust is zero).
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The corresponding pitch axis mixer blending schedule is shown in Figure 89. The
schedule blends the pitching moment command as a function of dynamic pressure from

all propulsive at 5.4 Ib/ft 2 (40 KEAS) to all aerodynamic at 33.8 lb/ft 2 (100 KEAS). This

schedule results in a trimmed tail deflection which blends from -8 degrees at 100 knots

to 0 degrees at 40 knots, Figure 87. Figure 88 shows the corresponding trimmed ratio of

the ventral nozzle's thrust to the sum of the lift and ventral nozzles' thrusts. Figure 90 shows
the pitching moment required to trim the aircraft, showing the reversal of required pitching

moment to trim resulting from the ram drag forces dominating the basic aerodynamics.

This figui'e also plots the pitch trim contributions of the aerodynamic and propulsive

effectors, indicating the smooth and reasonable blend between these effectors.

The pitch axis dynamic pressure blending schedule is also used in the roll and yaw

axes, since it provides a reasonable blend and results in simpler control laws. These

schedules were analyzed using a steady level flight trim sweep along a maximum 8 degree

pitch attitude profile in a 20 knot crosswind.

The yaw axis schedule blends collective tail deflection with differential lift nozzle pitch

vectoring. Figure 91 shows the yawing moment required to trim the aircraft in a 20 knot

crosswind. Notethat the total required trim yawing moment also reverses around 40 knots,

indicating that the trimmed collective tail surface deflection naturally tends to zero as

airspeed decreases to 40 knots. Thus this dynamic pressure schedule results in low

trimmed yawing moment required from the propulsive effectors. Figure 91 also shows the
yawing moment contributions from the aerodynamic and propulsive effectors indicating
the smooth and reasonable blend between these effectors.

The roll axis schedule blends differential aileron and trailing edge flap deflection with

the thrust difference between the left and right lift nozzles. Figure 92 shows the rolling

moment required to trim the aircraft in a 20 knot crosswind. Notethat the required trimmed

rolling moment not only includes contributions from basic aerodynamics and ram drag,

but also includes rolling moments generated by the collective tail deflection and differential
lift nozzle vectoring used to trim the yaw axis. Figure 92 also shows the rolling moment

contributions from the aerodynamic and propulsive effectors, indicating the smooth and
reasonable blend between these effectors.

3.4.2. Transition Envelope Sensitivity and Control Power Analyses

The analyses use the MODSDF aerodynamic analysis options which perform trim
sweeps. The trim sweeps plot the trimmed aircraft states, surface deflections, nozzle

thrusts, and nozzle vector angles, as a function of velocity ranging from 0 to 200 knots.

In each analysis described in the subsequent subsections, the transition envelope is

described using trim sweeps which vary a second flight condition parameter describing

whether the aircraft is in a descending or ascending flight condition, in an accelerating or

decelerating flight condition, or in a crosswind. The trimmed control effector positions are
computed using the schedules described in Section 3.4.1.

All cases are for STOL flaps ( leading and trailing edge flaps down 30 degrees, and

ailerons down 15 degrees). Also the gears are down, LIDs are deployed, and both the main

and secondary inlets are open. Gross weight is 25000 pounds with corresponding inertias

of 97450, 11650, and 104775 in pitch, roll, and yaw, respectively. All flight conditions are

for 50 feet (out of ground effect) and a MIL-STD-210A tropical day temperature (about
90°F at sea level).
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Figure 89. Corresponding Pitch Axis Mixer Blending Schedule

Figure 90. Trim Pitch Moment, Thetamax = 8, Gamma = O, AXSCMD = 0
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The control power capability is described as the pitch, roll, and yaw acceleration that
results when the control effectors are abruptly moved from their trimmed settings to their
limits. In hovering cases, normal force capability is described as the normal acceleration
that results with an abrupt change to maximum engine power.

3.4.2.1. Transition Envelopes

This section describes the envelope of nonaccelerating flight conditions for which
trimmed flight is possible during transition. These envelopes are described using plots of
the envelope of achievable flight path elevation angles at various effective jet angles
ranging from 0 to 90 degrees. Figure 93 describes the flight path/velocity envelope for an
effective jet angle of 0 degrees. The lower limit from 200 knots down to about 120 knots
is the trimmed flight path at idle engine power. The envelope then is limited by 16 degrees
trim angle of attack down to about 55 knots where the maximum flight path angle of 74
degrees at 16 degrees angle of attack is reached (pitch attitude equals 90 degrees). The
envelope is limited above by maximum engine power. An upper limit is reached here due
to the high drag associated with having flaps down, gear down, and LIDs deployed.
Figure 94 shows these same limits for an effective jet angle of ten degrees. For jet angles
of 20, 30, and 40 degrees, the envelope limits come together as shown in Figure 95 to,
Figure 97 illustrating that lower velocity flight conditions can only be reached at higher
effective jet vector angles. Figure 98 through Figure 102 show the lower velocity flight
conditions which can be achieved at these higher effective jet angles.

3.4.2.2. Transition Envelope Sensitivity to Maximum Allowable Pitch Attitude

This section describes the sensitivity of the steady level flight transition envelope to
maximum allowable pitch attitude, and control power available at the trim points along the
maximum pitch attitude profile. The trim sweep is steady level flight with varying limits on
allowable pitch attitude from 6 to 16 degrees. Figure 103 plots the envelope of effective jet
angles as a function of velocity, illustrating the sensitivity of the lower end to the maximum
allowable pitch attitude. Figure 104 shows the effective jet thrust magnitude sensitivity to
maximum pitch attitude. Figure 105 shows the corresponding trimmed pitch attitude.

These figures verify that the reference 8 degrees maximum pitch attitude profile is near the
center of the envelope and allows adequate margin to produce lift with angle of attack or
engine power, while providing adequate line of sight for the pilot.

Figure 106 through Figure 111 show the pitch, roll, and, yaw acceleration capability
for the trimmed flight conditions along the maximum pitch attitude profile. These figures
show that the US/UK CEM pitch, roll, and yaw acceleration requirements below 35 knots

are met, and increase sufficiently in transition to provide adequate control power using the
primary effectors with no reaction controls utilized. Figure 112 plots the normal
acceleration in aircraft body axes that results from an abrupt increase in engine power to
maximum dry power, and exceeds 0.1 g in the lower speed regions. In higher speed
regions sufficient normal acceleration is achieved through wing lift.



Figure 93. M4636 Transition Envelope, Jet Angle = 0 °
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Rgure 100. M4636 Transition Envelope, Jet Angle = 70 °
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3.4.2.3. Level Flight Accelerating and Decelerating Transition Envelopes

This section describes the level flight decelerating and accelerating transition
envelopes. The lower end of the effective jet angle envelopes were computed along the
reference maximum 8 degree pitch attitude profile with acceleration along the flight path

varying between -0.25 and +0.20 g's. A deceleration of -0.21 g's corresponds to the
US/UK CEM requirement for a decelerating transition from 200 knots to hover in 50
seconds.

For decelerating transitions, Figure 113 and Figure 114 describe the envelopes of
effective jet thrust vector angles and magnitudes. Note that a - 0.20 g steady deceleration
requires forward nozzle vectoring (greater than 82 degrees) below 123 knots airspeed.
Also the maximum power envelope limit depends on the deceleration rate. Figure 115
shows the corresponding trimmed pitch attitude. These figures indicate that the aircraft
satisfies the US/UK CEM requirement of 50 seconds to decelerate from 200 knots to hover.

Figure 116 through Figure 121 show the pitch, roll, and, yaw acceleration capability for
these trimmed flight conditions, indicating the adequate control power exists in level flight
decelerating transitions along the reference 8 degree maximum pitch attitude profile.
Figure 122 indicates that adequate normal acceleration capability from engine power
exists in the lower end of the transition envelope.

Figure 123 through Figure 132 show similar plots for accelerating transitions, and
show that adequate control power exists in accelerations.

3.4.2.4. Transition Envelope Sensitivity to Trimmed Right Path Angle

This section describes the transition envelope limits in steady ascents and descents.

The trim sweeps are steady descents along a maximum 8 degree pitch attitude profile with
flight path varying between -9 and 0 degrees, and steady ascents along a maximum 8
degree angle of attack profile with flight path varying between 0 and 12 degrees.

Figure 133 and Figure 134 describe the effective jet thrust vector angles and
magnitudes for steady descents. Note that the transition envelope widens as flight path
elevation angle decreases. This is primarily due to the increase in allowable angle of attack

along the 8 degree pitch attitude profile that results when the flight path is decreased.
Figure 135 and Figure 136 show the corresponding trimmed pitch attitude and angle of
attack. Figure 137 through Figure 142 show the pitch, roll, and yaw acceleration capability
for these trimmed flight conditions, indicating that adequate control power exists in steady
descents. Figure 143 indicates that adequate normal acceleration capability from engine

power exists.

Figure 144 through Figure 154 show similar plots for steady ascents. As seen in

Figure 144, the width of the jet angle/velocity envelope does not change significantly due
to the fact that the tdm sweep for the lower end is along a constant 8 degree angle of attack
profile, with pitch attitude increasing with the flight path, as shown in Figure 146 and
Figure 147. Again the figures show that adequate control power exists in steady ascents.

117



• I I . I " I

:_¥_,. ! I;W 2pK ).B, S]]OL FLt,eSr TtOP _1 [AY, ^_r'lTUO!-
.Irn. L_IiER NO III_TI_AX;CJJII _ -0.!50 I / / / I
_)l.;. LONER ND.. _LT Art iC,_ikl..:_ . :0. _00 ..... it-, _o,E,,,|._.,_.,_, -o.50 / / /

+'+ FOIER Nb PT 3_Z;CM ._ +0, I00

: N _': UEEEB B i b X'DM _ . ..-_.O. 511

, UI_PE.R NO': IT: It$Clll '';'0:50
:Yi: UPPER ND_ I_T _ WSCM "r .... r--O. O ....X! UPPERI N It|CM - -0, g

-.l_ij.ok_;eeq ,eWE!k}..AxscuL'; ...... :;_LO_L_.....I _ | .... |

• ::'+ SnI_, .... _....... _ _ _

_'.. !;ii_!!'__:71"i"7: --'-- -"'"-_7 7lll _i'-'-7 "_: ":: ' .... -7

!i ......i:_.__ ,.._. _....: : ::.....
:;__!__:.i: i,i_:-_,-:!_::i:_:_: i _i i:i,- : '_: .: _

_c: .... _o: ,o- . _o. _ _. zo. :_ !4o. I ,,o.

Figure 113. Transition Corridor Depending on Deceleration

Figure 114. Transition Corridor Dependence on Deceleration

118



!i
i

i ......

\
Bo. oo.

Figure 115. Transition Corridor Dependence on Deceleration

i ! i ! I
_ I i , I., I

i I i M4631) TILANJ I!T ON CORR IDOl

., , Yu : :.:!_i i :ii i . i

i I _); ]LPIEI "i_l,#llliiPITH iX :H_i,? |:i;

A.:: L . P:_lILll _ ± l[ :M :,,; "

Pr 1L_IIEII-I:NII-li_ :IX ;UOl:_ [_,!:.:;
! I+,-It-Oma_iiN_ p:t_--_x :u_- I---i_

• I:#!I I: :.i.:.::. _I::! ' :

I I__ _ _"_:

I F-_I:_'I°- : _°-::I =,o, _,o_
i.-I +-I :.1-_..: J--!J-,-TRIIE. ,iiR

,,P :

i00. : 120. I 40. ! 60.

I
)N , I

/'

tsO. oo.

Figure 116. Transition Corridor Dependence on Deceleration

119



f
I']

i

i.!

!+-

.÷.

+..I:

i%

-T
: i::
_lii

.+:iii!
:-I-

7

:!:i

i.:.

+:I:::

---4-.

.... 4......

N

"7_..2

+ X"¢111_,'_"

;._II'Ii£Ul ,; ' .,;11]: SO- [

_::is cn! ]_ so

+-:-F ::] I . ][;

a q_ 'iT

ii!;] '.: ::

ii'ii:":i:i]i

!!%l: ;ii
:_!iiil_+iil

!:i :

•i 71

_ i.

i:

7-- ""'_ "r" "-'-

.... ...._,..

] [

"--' ....... _ "-" 7[ "

0'+ ;':; _ h
r! ;/ '::!',::';

ICE 01,
L

.TIT IOl_

!

_!._.

i
,...,__

-77:"

+:--i"7:
.1

;_. •
, i

I I
I -t

DECEI ER_,T I N

so e=

t

:,,_: , ,

-7-"r,r, " _77 r :-"

.---'_-- -:e, "_-" "-_ "

, ,_. ..-+-,..

'+ q _t., .... .

..i

-->_ ....+_
...... !._

40: ' ! _0_
+ ..! -+. -

i '

OO]
OO+

+.._..

I

__

_O';T

aO_A" "

'iOl_

! 1

!.

......! i

I i

Figure 117. M4636 Transition Corridor Dependence On Deceleration

PEt OE( CEI ONI

)i_] _, _-I_-

:-'  !i!iiiill

:!

 ! IiI++++''+'
.+++!
!1:+1:.,, !} r!, /

DE_;Et_

,r !!F]

-r+ I .-:- -._

I:; , i

:l::I ......
_ .4-,1

•ii!' .i!

_ , ,

'DT

-_P.T

:i!:

:_,_-:::. ;.:i- _

-'/ii

,b.._

Figure 118. M4636 Transition Corridor Dependence On Deceleration

120



i u4
I

iitkt ;li:.l _ Ii I

:I;t :t;q iZ;:i

ii;;i _:_ t ;

i:-i < • F j

_+, 4:,...........-
"!"! il:l _L1

!"J'!l'"ii'ii • -

" :?_ii

" !-.'_ _i-xl

...... ;i. _--,_l_I
i,._i - -

--,---t

Z'7!,_-i _I#;_--_-

i

--' _t _- ;:.:, i
1"4"

: -_.I,..i

i{7

ii 77.;

i "-

• .).
-i

7!:

! :ii;!

! o2:"

.T_ _e-

' I
)ei !t_l-lice ,
l ....

;,i'_ "-,. -" ....
:_it¢ "
!l'l 'I '

_iII 71 i- .:

7fI_ "

.._e_.......

._ _ - .....

i ,
/

,- -_-
i

IIo .' :ilzo,
+._ i-t4 "P-!...-

• i i

CEL!ER, illiN

" i i .I ! i

.. _-;-
r ,

.o _..,i --r-L

: '- "_ ...... r-

: i

- @_=-
_ -_-

PDT lll_
PDT IOil,"

_: .... ,..

ii
• : i;

:!9

i

..... _--.._

-:-. -$-

.... X.

I00:

--,r--

_ii_..

-!T
-!:

"7+

7-"

-V-

Figure 119. M4636 Transiton Corridor Dependence On Delceleration

!]:;;_!iif!

'M

=:
.!

......ill}
xlx:

::i:i!

I.!

17S
!7i!4
:!ti?
't11:
i iT;!

I:

:12;

ih:! i

Y:!t!!:

i!:

I

IN: I.l
4. --..

_ - ,.

FL: • ' :

li_ II_II
I_ IIJI

rllll

7t_

L if:,

:!L

;:! . jl

i "I • !L:

::' _ :_.C
r]!!i -

:_1:i :71;

!! _j.

;i.: Fi_:

did

i

IN CC ili

!I
! iloi

ill i_MI -;r
il iCll _:1
il i¢il
II iCil "_"
II iCII
IX !till .;Ii

i ::

li!! :

:[, !L_,

_ :!ii
; '

91 x

_0

ili
iiu

_d

31_ i_!I

I I

iO ? -'I" -+'-rl---" .b'--Iltllt,o i7 :::.4.{;7 .-i-;-i+..:'.,,..
' 1L_ 1.! I I./

x_ ....!=
711 i i-

P_ ."r

R'T i

,_71 k

T + !-.-

Figure 120. M4636 Transition Corridor Depencence On Deceleration

121

ORi_lN.a,,L PA(iE I



"4'17t:, .. N]

11_iI :.ii; ..... r:*:::!!!! :. :

i:!ii_n_ ._.,..Ni£.,!!!_i_.,.

ii/-:w=!i_ :_ii :,r....

iii!Plii ._ _-i_ii._!
:: :: :::;::::::: : ::::] 'q'-

:!]i iT! _ _i,....... ._:

: :s: :_,........iii!i

]: . . ]11[ _:::n:::

:_i,I• ' _ --""

...._;! _[i_[

g1!:_!:

...... i:.:.[i71.....

!_ '1 '. I :

_ : _: _:

:[[ :. ]::i_i;li_!

it! "

:ii li::,
A! :1 " F :t:

tF lll)¢R C

!!t .......

.......:lii
'![!_]I'

,2

,'_li[i;r:

: i

::]

i

;P_WPE _cF _ Di

;[I.: . : !li i'-

i],._ , ;[!!i

.....i]!_ i I_:l_iiliIoo:::i ; !_11_!ii!:
:_0 I :It"

,2i!

INi,,.b ' '":

: 11

..... _;.-_
: : :! i

:E|

I:F:

i

:i!i::
iit:]i
!i!-

i:Ki

.ii

, Ill
! I

i..... ieo_rl

"! :- : , i .:t

::': [_L
-4--I -,

I

I

:_:l!i!!_ti I::.......

:J ...... L---:1

'-_........ -+" _ II- :-, : ....... r- i

iii:!i6_ 1!" I_O. i)

_:.-_- _.-_- . ..
I I

Figure 121. M4636 Transition Corridor Dependence On Deceleration

I I I .0

I

-J

-- :).8

:).6

J.I

'_ D.2
<c ,ms

7..3 ' i

_p,P .0
_ •

N I

I

Figure 122.

_I"_ _ ,
, £

M_ G3E
W . 2

(M
'rl LOB
_) LOll

LO!

K LgW
i" LOW

2

TFAN
}K .B,

[R I Nil
! I Nil
E_ IND

ER INO

O.

;IT ON
51 IL

fflTI AX
I111 AX
gill &X
II II AX
IITI AX

illl AX

-- I

I

....:--

[0.

, i

C3RRIDOI_ D PE
FLk, P$ T_OF I C_

_CI -0. 50
;Ci -0. O0
iC| , -0. 50
;CI -0. O0
;Ci -0. 50
_Ct ). O0

0. _0. 00.

T_I{JE AI_SP ED
! i

I"I_IN F5O

M4636 Transition Corridor Dependence on Deceleration

122



,i': -'_i T_,,N_IT,I )N _0!f : i J ! !M463_ R I DOff D_PEHDE_ :E: ON ACCLI!_.RAi lqN

(.9 lower EI�{ WlilH _XS_ID1. ) 05O | !

_ f :_ EH[ 'I'I"HXS(_MDF C)'qO ' J /

EI_D WlIIItHXS(:MD/ ) I_0 |
! C).200 /xS(;Mo/,E_O Wll Tl!

EBO Wll TH/t XS(;MDF {). 0 0
END WlIIIt/_XS(;MD|. D I 0

E [ Wlllt _XSC D 2 0

0,.

'Rt : _IR 1101_3 ) i I I t

........... ! I I , / 1 ' ' _ I

0 0.

Figure 123. M4636 Transition Corridor Dependence on Acceleration

4.(

I.!

L_.I

M4163 I_A_ Ol
,I ISII C ,R liD{,w 4, ; iK |.B 3L FL PS 1

I I /

011 ( EFQ WIItl LX U r "O|EII EtD WlItl Id( M[ -
O| _ EtD Illil J,X M[ -
OI _ FID IIIH I_X M[
011.,_ E|D IIIH I_X M[

ISPI_EII !Fe II III M[
I/PPEI_ EIDI ! 11 I_X :M[
(_PPE]_ El' D i'll IH _,X :Mr

_D _XSCM[IlPPEI_ El i'llIH

tt ° I'""

ICE

AY

Ot_ AC,CELERAI ION

AII I_IJI)L - bO' F

.00o
.050

11i.!
.w

(
,1
.150

";10

I

__ i 1

r IHi). I ;
, .....i_E ?;_,i .......

i

Figure 124. M4636 Transition Corridor Dependence on Acceleration

123



(;W = _ )K L_,r I.[ _t"3, l|(Ol'hC/. IJAY, i AI_IIIIII)LSIlO L t I)EI"I(:I/ I:t:l I [ _ IbOi F
S_ i

c .ow _ E,IUWb[, AXS:,O - b.O00
.ol( ( EilU Wllll AX$ ;MD IO.O,_O

IO. I00
IO.Iso

o 20(

.OWE _ Eiln WIIIH A {S :1,41)-
O|E I Ef!O WttlH A IS :MD -

,.OWE ? :E!me wllll A {S :MD -
I

i

I
I

I

_i SPIEl OI ( KN4
I

) .

i

i

i
i

\

\.

IN ' ,[4o.-7_o. .... ,)87.
lO I S ) I I I i

...... ]._+i i '

2)00.

Figure 125. M4636 Transition Corrldor Dependence on Acceleration

L

,J

P

I
v°

O.

O. -

s.I

0.I

fu
,j
D

g

I

B3(_ TIA $1 IONi( )_R
I

Ow I_'s ILB. IST FL

'o Ri;N""LOW1ER II II il
LOWIER N IIII l
LOI_ER II II i
LO_ER Will i

i

i

,I<-
X C -
X C "
X C
X C -

)OR [B, PENDENCE ON; B

' " O_ 1 i i
$' ROIlCALDAY'IAI|Ilt)I t I I

oooo I i---i--*
0 050 I F
0 I00

0 150 I
O I 2 O 0 i '

_DINUI

i

I

/
/

i

i """. 'r_.ļ
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Figure 149. M4636 Transition Corridor Dependence on Flight Path

Figure 150. M4636 Transition Corridor Dependence on Flight Path
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_ Figure 151. M4636 Transition Corridor Dependence on Flight Path

Figure 152. M4636 Transition Corridor Dependence on Flight Path
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3.4.2.5. Transition Envelopes in Crosswinds

This section describes the steady level flight transition envelopes in crosswinds. The

trim sweep is steady level flight along a maximum 8 degree pitch attitude profile in

crosswinds ranging from 0 to 20 knots. The trim sweeps are plotted as a function of velocity
with the crosswind component removed. Therefore, with the aircraft flying due North in a

steady wind coming from due East, the x-axis represents North inertial aircraft velocity.

Figure 155 and Figure 156 show that the jet angle and jet magnitude envelopes are not
sensitive to crosswind velocity.

Figure 157 shows the trimmed pitch attitude profile and Figure 158 shows the

increasing trimmed roll attitude as crosswind velocity increases. Figure 159 plots the flight

path azimuth angle, which is the angle between the projection of the aircraft velocity vector
onto the inertial horizontal plane and the North compass direction. (The aircraft nose is

kept pointed North in thesetrim sweeps.) This angle approaches 90 degrees as the aircraft
slows to 0 North inertial velocity (representing a hovering condition in a crosswind).

Figure 160 and Figure 161 show the corresponding sideslip angles and angles of attack.

The rightmost vertical line in the angle of attack plot is due to the plotting routine, which

is attempting to draw a straight line between the trimmed angle of attack at 5 knots inertial

North velocity and the trimmed angle of attack at 0 velocity in a pure crosswind (which is

always -90 degrees).

Figure 162 through Figure 168 are the control power plots, indicating that adequate
control power exists for steady level flight in a 20 knot crosswind. In particular, Figure 164

through Figure 168 show the sensitivity of the lateral/directional control power to

crosswind velocity.

3.4.2.6. Transition Envelope Sensitivities to Center of Gravity

This section describes the sensitivity of the level flight transition envelope to shifts in

center of gravity location. The trim sweep is steady level flight along a maximum 8 degree

pitch attitude profile with center of gravity ranging between 37 and 43%. This range of

center of gravity locations covers the expected center of gravity travel for the aircraft during
all mission phases, as indicated in Figure 169 in Reference 1. Figure 169 through

Figure 171 are plots of the jet angle envelopes, jet thrust magnitude envelopes, and the

pitch attitude profiles, indicating that the transition envelope is not sensitive to center of

gravity variations. Figure 172 and Figure 173 show the shift in pitch control power

capability toward nose up which occurs as the center of gravity travels aft. This is due to
the decreasing required trim pitching moment as shown in Figure 174. Figure 175 shows
that normal acceleration capability from increasing the engine power is not sensitive to

these center of gravity variations.

3.4.2.7. Transition Envelope Sensitivities to Predicted Ram Drag

This section describes the sensitivity of the level flight transition envelope to variations

in predicted ram drag. The trim sweep is steady level flight along a maximum 8 degree

pitch attitude profile with -I-20% variation in ram drag. The ram drag was varied by adding

a percentage scale factor to the calculated air massflow into the inlets when that massflow
was used for the ram drag calculations in MODSDE Figure 176 shows the effective jet

angle envelope with the ram drag at 80% and 120% of its calculated value, and indicates
that the transition envelope is not sensitive to variations in ram drag.
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Figure 157. M4636 Transition Crosswind Sweep, Pitch Attitude
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Figure 158. M4636 Transition Crosswind Sweep, Roll Attitude
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Figure 159. M4636 Transition Crosswind Sweep, Azimuth Angle
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Figure 160. M4636 Transition Crosswind Sweep, Sideslip Angle
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Figure 165. M4636 Transition Crosswind Sweep, Left Wing Down Pdot
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147



..........::_.... _ +d:4(_3611TR

.................. _+...

...... -:,:i r# .:"...................
+++:++.+: .....

; +' ::itS+! !_!++++i+ ++"::t lltll ++i_E

........ i )H  ii-+,,++
• : +:+i :! ::+;; : ..,..:::: ++:,+:+_+++.I+++ • .,, ;;,I JJJ_l_

[:;:: ...........................
::_.;:.+........"" :::,:+: +,'_:].t]i+]l+_?_:_+++: +++;_:++I::++:+++

: ::: ::: +:+++1+ _ + + + : : : : + + : + ; + : + ] +_ [ ] ..... "

-:+ :im_:+i : :i! +iI:+;!_+!ii'i:+li_i:z_i!+!

:'u+......... "....... :; +:+++:.:1i:]]_:IF]+:;:+if!+
:t]]]i :+_i:_":++: :;]] ................................. '++]l+++ ::+5 : :":";:+_'" + :: _ +'" :; I:;:: : ;. I . '

.........+ ........ i liil ........':' :' :' _li!:: FTiI_+T " " .... _.............
..... :_":: _' .... 'i ; .:;:: ::ii!,.::::!l:!::l:.+_l:..I. ::".r..-'t!-. !_I: ". :::r :':.

;+ :_:]"-!i:.: :::+ : ._ .--'+-;-;r: :',.: ........ : : i-: ---+_'_--+.-

_. _ ..-:-- _p-'F+I-_

....... i

,,_ . ..

.... !:L i....... + : :-_++_:1 0_:: '+')iiO_+]J:::Ji++++:+::t:': - : :+ O + .

•::+: "-i.: .I+:" + . : i. + •

i

LHSITi

•( ! 1:_;II
2:[ ; ......

•: I+:._+;41

!:.+!l.!_+.:: !
,:} .:::. +:: : ;x

;F .+ !

_ ..-.---

+ii: _:

• ', " :i," :

, ;

+._::_.:..

+ :+

,T::: +_
+

::!:

O, :::.!
kl6SP|
,! .:

: t t I +t +

)NICG S-WZEP.;

;! k I . .... ,

]
01;:: !:!: : ......

0 M:. i::::

::"r+'.r _"........ . .'_r

:.::+:: _:. :u+di;F
__._.___ Z..:_ :::..

::: !: i'! i •_::

_ :;,_- _':

t
i+i . mots-

J l +:

.... I::::I
.... i:F-

ii
" ' ::: .! _+,_

-:"- ":i_ i)
! -: +

-- -T" --
::.. L::_+.____

;-I )

I
...... 1 J

....... :.-. --

Figure 171. M4636 Transition CG Sweep, Pitch Attitude

Figure 172. M4636 Transition CG Sweep, Nose Up Qdot
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Figure 174. M4636 Transition CG Sweep, Trim Pitching Moment
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Figure 175. M4636 Transition CG Sweep, Normal Acceleration
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3.4.3. Hover Control Power Analyses

This section describes the control power available in hoveringflight. The trim sweep

is trimmed hover for velocity azimuth angles from -180 to 180 degrees and velocities

ranging from 10 to 40 knots. This sweep represents either hovering flight in any direction
with airspeeds up to 40 knots, or hovering flight over a ground reference point in a

horizontal wind up to 40 knots from any horizontal direction. In all cases the aircraft nose

is pointed North. Figure 177 is a plot of trimmed roll attitude versus trimmed pitch attitude

for lines of constant velocity, forming a closed plot as the wind direction is varied from - 180

to 180 degrees. This figure shows that the MIL-STD-83300 requirement for trimmed

attitude variations of less than 10 degrees in a 35 knot wind are satisfied for this aircraft.

Figure 178 shows the jet thrust magnitude required (the equivalent jet angle was kept at
82 degrees).

The trimmed pitching moment required from the ventral nozzle for these flight

conditions are shown in Figure 179, along with the aerodynamic and propulsive
contributions. Since the ventral nozzle is used exclusively to trim pitching moment in these

cases, the plot of pitching moment due to the ventral nozzle overlaps the solid plot of the

total pitching moment required to trim. Figure 180 through Figure 185 show the control

power available in the pitch, roll, and yaw axes, indicating that the US/UK CEM
requirements are met.

The normal acceleration capability is shown in Figure 186, with a capability above. 13
g's incremental normal acceleration in crosswinds up to 40 knots. Figure 187 shows the

normal acceleration capability in ground effect (gear contact occurs at an altitude of 6.42

feet). The plot indicates that the minimum normal acceleration capability is at 15.42 feet,

but actually the minimum occurs at 14.42 feet. Figure 188 shows the sensitivity of the
normal acceleration to descent rate at this altitude of 14.42 feet, and shows that the

capability is above the 0.1 g requirement.

3.5. Simulation Test

A simulation test of the SCIP aircraft was conducted on a fixed-base simulator at

NASA-ARC from March 15 to April 23 1993. The simulation objectives were to evaluate

the integrated flight propulsion control system, including the benefits of different levels of

control augmentation under the influence of varying environments during both field and
shipboard operations.

To evaluate the IFPC system, flying qualities were evaluated for specific tasks through
pilot comments and Cooper-Harper (Reference 24) ratings. The benefits of different

levels of control augmentation were studied by investigating five transition modes and four

hovering modes. The influence of different environmental conditions was studied by

evaluating flying qualities for both VFR and IFR conditions and various turbulence levels

ranging from calm to severe conditions. The influence of both field operations and

shipboard operations was studied by performing vertical landings at an airfield, an LHA

class ship and on a destroyer class ship in various sea states ranging from calm seas to
sea state five.
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Figure 177. M4636 Trimmed Hover, Roll Affitude vs Pitch Attitude
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Figure 178. M4636 Trimmed Hover, Thrust Magnitude
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Figure 179. M4636 Trimmed Hover, Trim Pitching Movement

Figure 180. M4636 Trimmed Hover, Nose Up Qdot
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Figure 181. M4636 Trimmed Hover, Nose Down Qdot
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Figure 182. M4636 Trimmed Hover, Left Wing Up Pdot
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Figure 185. M4636 Trimmed Hover, Nose Left Rdot

Figure 186. M4636 Trimmed Hover, Normal Acceleration in Crosswinds

156



; : , _, : " - !,!: "" .!/£::;,iA! • 'i ¸ , I • ' '......: i 1,
;'":: ::::_:: ;;: F;;: " !: : :_ : ';': :; P : 111" " _: " : ":: : ' ' ; : " ::_

:i::: _;!:' :_:l;:i._: :: = :_ :_:i ::,_{-:::_!.;!!:;:i!::::!_:;:l:: ::'l:! _:_ ;1!:1:'1LL_ .:_'1... L_._.J.... L ...J--.-_-." --- .... _

Figure 187. M4636 Trimmed Hover, Normal Acceleration in Ground Effect
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Another objective of the simulation was to study the coordination of the aerodynamic

and propulsive effectors in transition and to study the propulsion system performance.
The simulation had the ability to run the propulsion controls in three different modes: 1)
no RCS controls, lift and ventral nozzle vectoring used for attitude control; 2) RCS controls
used for control of attitude, no lift or ventral nozzle vectoring; 3) both RCS and nozzle

vectoring used for attitude control. Different conditions requiring a range of propulsion
system performance were generated by changing the day type for different temperature
levels, and aircraft weight for different thrust levels.

Section 3.5.1 gives a description of the simulation, including the evaluation tasks
performed by the pilots. Section 3.5.2 presents the pilot evaluations and summarizes the
pilot comments. Section 3.5.3 summarizes the control power used dud ng the various tasks
in terms of the amount of pitch, roll, and yaw acceleration generated by the controls.
Section 3.5.4 describes result fan analysis of the propulsion system data from the piloted
simulation.

3.5.1. Simulation Description

The SCIP simulation was conducted on a fixed-base, single-seat flight simulator at
NASA-ARC. Pilot controls include a center stick, rudder pedals and a Harrier-type

throttle/nozzle lever quadrant. Both the stick and the nozzle lever were modified with
thumbwheels for use in the ACT-MT and ACT-AT modes, either the stick thumbwheel
or the throttle thumbwheel could be used to command deceleration.

A three window computer-generated imaging system provided the external view.
This system presented either a view of an airfield representing the Seymore-Johnson
airfield with STOL runway markings, a ship scene modeling an LHA class ship (LPH-2),
or a ship scene modeling a Spruance class destroyer (DD-963) with a 40- by 70-ft
landing pad. Various visibility conditions can also be generated.

An overhead optical-combining glass projected the HUD for the pilot. The HUD
displays in this simulation used a format employed in several previous NASA V/STOL
simulations at Ames, References 8 and 9. The HUD formats are described in detail in
Reference 19.

3.5.2. Test Results-Pilot Comments and Ratings on Flying Qualities

The approach and landing tasks described in Section 3.5.1 were evaluated as three
specific tasks: 1) Decelerating Transition (DT), this isthe initial phase of the approach; 2)
Hover Acquisition (HA), the final phase where the hover point is acquired; and 3) Vertical
Landing (VL), done on either the field or one of the two ships. The approaches were done
in both VMC and IMC conditions. Approach profiles to the runway and destroyer are shown

in Figure 189. The pilot rating summaries are plotted versus mode, a table of the modes
is in Figure 190.

The pilot ratings for DT are shown in Figure 191 and Figure 192, for VMC and IMC
conditions, respectively. TURB is the root mean square atmospheric turbulence in
feet/sec. In calm conditions, the manual throttle modes were Level 1. Adding RCAH to the
TRAN mode improved the ratings slightly (TRAN vs. TRAN-RCAH), and adding the
thumbwheel command again improved the ratings further (ACT-MT vs. TRAN-RCAH).
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Figure 190. Case Numbers and Control Modes
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In calm conditions, the ratings for the autothrottle modes increase into Level 2
category. The main deficiency was that the autothrottle response dynamics and the pitch
stick response dynamics were not properly matched. With flight path being controllable
with either the throttle orthe stick, and the dynamics not being well matched, the pilot could
command both controls out of phase making it easy to PIO the flight path response. Also
the thrust response during the initial vectoring down to hold angle of attack was

momentarily oscillatory, creating about a ten knot range where the pilot had to decelerate
through rapidly. Another comment was that, when setting the autothrottle, the handle had
to be moved through a large travel to a new location, during which time no thrust response
was apparent. Although this was the proper operation of the autothrottle, some pilots
found moving the throttle with no thrust response a little disconcerting.

In turbulent conditions, all ratings increased into Level 2 category. This was due mainly

to poor gust response caused by very light wing loading (42 Ib/sq ft), making precise flight
path response difficult. Again ratings for ACT-MT were the best, and the autothrottle
ratings are similar to the manual throttle modes. The similarity between manual and
autothrottle is due to the ratings being dominated by the light gust response. ACT-AT
received better ratings because the thumbwheel control allowed the pilot to accurately
control deceleration while also being able to fly with hands on throttle and stick.

Note that rating did not vary much between VMC and IMC conditions. This was true
mainly because the tasks were flown with the approach guidance on. The approach
guidance thus was able to make the IFR approach as easy as the VFR approach.

The pilot rating summaries for HA are in Figure 193 and Figure 194. Most of the same
conclusions for the DT task applies in HA. As speed decreased, the autothrottle response

improved dramatically as the control laws blended to an inertially referenced command
system and as the natural coupling between pitch rate and angle of attack went away.

The pilot ratings for VLs on the airfield are in Figure 195. The rating were Level 1 in all
cases. For all the modes the turbulence level was not apparent to the pilot below about 45
knots. Differences in pilot ratings at different turbulence conditions were due to differences

in the steady wind speed, where the pilot was required to vane the aircraft into the wind
prior to landing, creating a slightly higher workload task. Note that the TRC modes were
generally rated 0.5 to 1 point better, putting the ratings solidly into Level 1 for all conditions.

Also the ACT-AT mode, which translated forward/aft with the throttle thumbwheel was
considered to be more difficult than TRAN mode where forward/aft translations were

controlled using pitch attitude commanded by the stick. This was mainly due to a
perception that controlling horizontal velocity with a single one hand controller was easier
than with two hands on different controllers. A few qualitative flights were performed to see
if this effect was improved by using the thumbwheel on the stick. The comments were that
the thumbwheel on the stick improved things, but that translations by pitch and roll attitude

commands was preferred.

The ratings for landing on the LPH-2 ship are in Figure 196. Again, in calm seas, the
attitude command system (TRAN) was preferred to commanding forward/aft translations
with the thumbwheel (ACT-AT). THe TRC mode received the best ratings. The difference
between TRC- MT and TRC-AT is that the autothrottle provides full authority altitude rate

command, making precise control of sink rate in ground effect just prior to touchdown
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much easier. Ratings for all modes fall into Level 2; this was because the ground effect was

severe enough so that the pilots could not consistently achieve the <5 ft/sec sink rate

criterion for satisfactory performance. All pilots emphasized that without this deficiency the
TRC command system would be rated much higher, and that it is a much easier task with
TRC.

The ratings for landing on the DD-963 ship are shown in Figure 197. The conclusions

for the LPH case apply here. Note that the average rating for the TRC mode with autothrottle

is below 2, because one pilot gave a rating of C/H 1.

3.5.3. Test Results-Control Usage

During each simulation run, the pitch, roll and yaw acceleration time histories were

processed to compute statistical data on the pitch, roll and yaw accelerations produced

by the controls. These data are cataloged using a variable called POWER, as shown in

Figure 190, and include the maximum, minimum, mean, and standard deviation of the

pitch, roll, and yaw accelerations produced by the control during each run. These data
were then averaged or correlated with similar data from other runs where the same mode
and task were flown.

These data were compiled for each task segment and each mode. Data are shown

in Figure 198 thru Figure 218. The variable TURB corresponds to 0, 3, and 6 ft/sec rms

turbulence in the transition and field vertical landing cases, otherwise, TURB represents

sea state. The figure numbers showing control usage data for each task are in the following
table:

Task Pitch

VMC Decelerating Transition 198

VMC Hover Acquisition 201

IMC Decelerating Transition 209

IMC Hover Acquisition 207

Field Vertical Landing 210

LPH-2 Vertical Landing 213

DD-963 Vertical Landing 216

Roll yaw

199 200

202 203

205 206

208 209

211 212

214 215

217 218

A few general conclusions may be drawn. One is that the pitch and yaw accelerations

produced by the controls generally fell within the US/UK Concept Evaluation Model (CEM)

requirements of 0.3 and 0.2 rad/sec, but the roll usage was generally higher than the 0.6

rad/sec requirement from the CEM, especially seen in severe turbulence. Also, control
requirements generally increased with turbulence level.

Trends between modes can be drawn by looking at the standard deviation of the

control power used as a function of control mode. Figure 219 and Figure 220 show the
results for pitch, roll and yaw acceleration for the VMC and IMC DT tasks. Pitch, roll, and

yaw control usage was less for TRAN-RCAH than for TRAN mode. In the other modes,

the control usage was comparable. Figure 221 and Figure 222 show the results for VMC

and IMC HA. Again the control power usage for TRAN-RCAH was less than for TRAN

mode, with usage in other modes being comparable. Figure 223, Figure 224, and
Figure 225 show the results for vertical landings. These results show that the control power

utilized in the TRC modes was higher than the other modes, especially apparent on the
shipboard tasks.
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3.5.4. Propulsion System Test Results

The integrated vehicle and propulsion system underwent five weeks of testing in a real

time piloted simulation at NASA Ames. The simulator testing concentrated on the flight
control modes with an emphasis on the flight regime of transition from wing borne flight

(axial propulsive thrust) to powered lift mode (lift and trim flap nozzle thrust), concluding

with vertical landing. In general Pilot comments were very favorable for the fully integrated

system. Pilot's comments and suggestions were implemented onsite and flight control
modes were retested following the suggested modifications. Analysis of propulsion

system data provides insight into how the propulsion will be used for future STOVL
applications. For the specific MFVT design, the data can be categorized into two separate

areas: engine response and exhaust nozzle system response.

Engine response is defined by the magnitude and frequency of the total thrust request

from the flight control. Analysis of the test data verifies the preliminary studies suggesting

a 10 radian/second closed loop thrust response was adequate for vehicle control.

It should be noted that the acceleration requirements were not taxed in this flight

regime during manual (Pilot controlled) flight. Computer controlled throttle was not a

primary concern of the flight control designer and no attempts were made to modify the
mode because the manual throttle mode provided adequate vehicle control.

It should also be noted that the flight control design resulted in no RCS bleed use

during powered lift mode. Use of RCS bleed would have resulted in more activity in thetotal

thrust control loop.

Figure 226 shows the closed loop frequency response of the thrust request and the

thrust. This frequency response was obtained from using a time histories recursive

maximum likelihood system identification. Analysis of the spectral content ofthetotal thrust

request, Figure 227, indicates that the propulsion system response requirements should
be limited to 2 hertz.

Exhaust nozzle response is obtained from analyzing the flight control request for thrust

split and nozzle vector angle. As previously stated, during powered lift the exhaust nozzles

are flight control surfaces and should respond accordingly. The thrust split is defined as
the four percentage thrust requests from the flight control for the spherical convergent flap

main nozzle, the left and right nozzles, and the trim flap. The left and right nozzles and the

trim flap nozzle, are of primary interest during the transition and attaining hover. Together

these exhaust nozzles provide the total thrust, thrust lifting force, pitch, roll and yaw control.

The flight control request for total thrust, thrust splits, and nozzle vector angles and the

geometric configuration of the propulsion system, were used to calculate equivalent pitch,

roll and yaw moment commands. The propulsion system feedbacks for thrust split, nozzle
vector angles and the geometric configuration of the engine are used to calculate the pitch,

roll and yaw feedbacks from the propulsion system response. The pitch, roll and yaw

moment commands and resulting moment command and pitch moments were again

analyzed using the maximum likelihood recursive method to provide the frequency

response. Figure 228 shows the frequency response of the pitch moment command and

pitch moment. The roll and yaw moment commands and resulting moments show similar

results. The pitch, roll and yaw request and feedback loops generally have a two and one
half hertz bandwidth (20 radian/second).
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The pitch, roll and yaw commands were also reviewed for their content. Figure 229
shows a typical spectral response for the calculated flight control commands. The data
indicates that flight control request are bounded at approximately4 hertz.

The propulsion system requirements specify a 10000. Ib/second (100 percent roll
control power) thrust modulation for roll control, while the propulsion system was
designed to provide 20000.0 Ib/second thrust modulation for control to be _ 16500.0
Ib/second (165 percent roll control power) and the normal usage was between +_6000.0
Ib/second (60 percent roll control power), both within the propulsion system control
design.
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4. SUMMARY AND CONCLUSIONS

The STOVL Control Integration Program developed Integrated Flight/Propulsion
Control (IFPC) technologies for STOVL aircraft by developing technologies for integrated
control systems, and also by developing integrated processes for the design and
development of IFPC systems.

We developed methods for partitioning control functions and assigning responsibility
for those functions among design teams. The functional partitioning process feeds into
the hardware architecture design process, where functions are assigned to different

processing centers and actuation systems.

We also developed processes for establishing and continuing tight and frequent
communications between design teams. One process was the use of the General Actuator
Model (GAM) for communicating propulsion system performance and response
requirements. The GAM was also very useful in the preliminary design of the flight control
laws eady in the design process, allowing early testing of the operation of the propulsion
system in closed loop flight control, and allowing changes to the propulsion system
requirements via changes to the GAM. This process lowers design risk by helping to
prevent costly design fixes later in an aircraft/propulsion system development program.
The GAM was also used by the propulsion design team as a design goal model for the

propulsion system control law design.

Another process we used to communicate design information was the use of interface
control documents to define the interfaces between the various components of the IFPC

system. This process is a well established process in IFPC integration, and successfully
established a clear understanding of the interfaces to each design team.

We also developed processes for control law design for STOVL applications. The
process we used involved a decentralized approach where the propulsion control laws
were designed as a separate function under the command of the flight control function.
The fight controls were also defined such that the flight controls were very tolerant to
differences in true propulsion system response relative to predicted response.

The simulation demonstrated the successful application of this design philosophy for
this particular STOVL aircraft. The simulation contained detailed models of the aircraft, the
propulsion system, and the IFPC system, and demonstrated good integration of flight
control and propulsion control functions for transitioning and hovering powered lift
assisted flight. The simulation results showed that total system performance was good
with the aerodynamic and propulsive control effectors properly coordinated. The results
also showed that the aircraft could be controlled successfully withoutthe reaction controls.

The simulation also demonstrated the benefits of advanced control modes relative to

an AV- 8B type command and control system. Six pilots evaluated 5 transition modes and
4 hover modes over five weeks of testing, including 717 evaluation flights. The 5 transition
modes represented a methodical build-up to higher levels of control augmentation, from
an AV- 8B type system (with improved handling qualities) up to full authority flight path and

speed command systems.

The simulation demonstrated these benefits in the context of both land based and sea

based operations aboard both LH class ships and destroyer class ships which are

equipped with a helicopter pad. Evaluations included approaches and vertical landings
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to a runway and to the ships. Approaches were taken in both VFR and IFRconditions and
in levels of wind ranging from 0 to 35 knots, and turbulence ranging from calm air to
MIL-STD-8785C severe turbulence. Ship board landings were performed in sea states
ranging from calm seas to sea state 5. The evaluations showed that the benefits in
improved handling qualities and pilot workload allow operations in more severe conditions
than is currently done with the AV-8B.

The SCIP program has provided a firm foundation for integrated control system design
processes and technologies for application in future STOVL aircraft programs. The SCIP
program developed integrated processes for the design of these IFPC systems, thus
lowering risk in design efforts for future programs. The SCIP program also showed the
benefds in high control integration for STOVL applications, not only in the cost, weight, risk,
and reliability of the control system, but also in the increased ability to provide pilot relief
modes, thus allowing safer and more effective aircraft operations in harsh environments.
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